K2-4. 1

FAA-EM-80-8-V
DQOT-TSC- FAA-824-V

Airport Landside

Volume V: Appendix B
ALSIM Subroutines

L. McCabe
M. Gorstein

Transportation Systams Center
Cambridge MA 02142

June 1982
Final Report

This document is availablis to the public
through the National Technigal Information
Service, Springfield, Virginia 22161.

Q

US.Deparment of Transportaticn
Federal Aviation Administration

Office of Systerns Engineering and Management
Washington DC 20531

Technical Report Documentation Page

1. Repeort No. 2. Government Accession No. 3. Recipient's Catalog Na.
't FAA-EM-80-8-V
4. Title and Subtitle 5. Report Date
AIRPORT LANDSIDE e Ol
VOLUME V: APPENDIX B ALSIM BU TR
SUBROUTINES -
8. Performing Organizotion Repart No.

7. Author's)

L. McCabe & M. Gorstein DOT-TSC-FAA-82-4-V
9. Performing Orgonization Name and Address 10. Wark Unit No. (TRAIS)

U.S. Department of Transportation FA032/R113

Researc and Sp ecial Pro grams Adminis tration 11. Contract or Grant No.

Transportation Ssytems Center
Cambridge MA 02142

12. Sponsoring Agency Nome and Address

U.S. Department of Transportation
Federal Aviation Administration

13. Type of Report and Period Covered

Final Report
Jan 1978 Sep 1980

Office of Systems Engineering Management 14. Spensaring Acency Cade
 Washington DC 20591 ACT-420

15. Supplementary Nates

16. Abstract o

This Appendix describes the operation of ten subroutines used to
support the AUXILIARY and MAIN programs of ALSIM. Flow charts and
listings of all programs are provided. The major portion describes
the FORTRAN subprogram FORTM which is used to read input data,
assign values to matrix elements, perform matrix searches and assign
parameters to GPSS transactions during simulation model execution.

Six other subroutines, mostly written in IBM System/370 Assembly
Language, are used in the initialization phase of the simulation to
link FORTM to the MAIN program and to provide an in-core read and
write capability. Two additional assembly language subroutines and
a FORTRAN subroutine are used during simulation of the airport landside
The first assembly language subroutine assigns the number of passenger
bags to be retrieved by the deplaning passenger transaction and gen-
erates random numbers to simulate waiting times at the bag claim facilit
The second subroutine performs the same function as ASSIGN and LOGIC
blocks of GPSS, but is FORTRAN callable. The FORTRAN subroutine of this
group detects argument errors of the previous subroutine and prints
error messages,

Other volumes of the Airport Landside report are: Volume I:
Planning Guide; Volume II: The Airport Landside Simulation (ALSIM)
Description and Users Guide; Volume III: ALSIM Calibration and
Validation; and Volume IV: Appendix A ALSIM Auxiliary and MAIN programs

17. Key Words 18. Distribution Statement

DOCUMENT IS AVAILABLE TO THE U.S. PUBLIC
. THROUGH THE NATIONAL TECHNICAL

Not Applicable INFORMATION SERVICE, SPRINGFIELD, -

VIRGINIA 22161

19. Security Classif. (af this repart) 20. Sacurity Classif. (of this page) 21. Na. of Pagas 22, Piice

y .

UNCLASSIFIED UNCLASSIFIED 328

Ferm DOT F 1700.7 (8-72) Reproduction of completed page authorized

SUMMARY

This appendix contains detailed descriptions of subroutines
used during the operation of the Airport Landside Simulation
Model. The major portion of this volume describes the FORTRAN
subprogram LINKC, alias FORTM which is Closely linked to the
GPSS-V AUXILIARY or MAIN programs during program execution. FORTM
expedites the flow of GPSS-V transactions within the model by
performing matrix searches and assigning values to tranéaction
parameters.

Three major program sections of FORTM are described in this
document. A non-executable section consists of FORTRAN variable
definition, data equivalent and namelist statements. An input
section consisting of 20 subsections initializes variables, reads
input data and assigns values to GPSS matrix elements. The main
section of this subprogram consists of 26 subsections which assign
values to the GPSS transaction parameters at each type of simulated
facility. During program operation, the GPSS-V MAIN program re-
peatedly calls the main section of this subprogram as transactions
move from one simulated facility to the next.

This document also describes a set of nine other subroutines
called by the GPSS-V MAIN or AUXILIARY programs or the FORTM
subprogram. A description of the purpose, usage, restrictions and

program logic is included for each subroutine.

Most of the subroutines described are utilized in the initial-
ization stage of the simulation. Subroutines CLINK, CLINKl and
CLINK2 establish linkages betwgen the GPSS program and the FORTM
subprogram, permitting HELPA blocks to operate as HELPC blocks.
Subroutine MNLINK allows the simulation user to code identical
mnemonics in the GPSS program and FORTM subprogram and transfer
numerical values in either direction. Subroutine XCODE provides
an in-core read and write capability and is used in reformatting
input data read under FORTRAN format control for subsequent re-

- reading. Function subprogram MHBASE/MXBASE/MLBASE provides the
base addresses of the GPSS-V halfword, fullword and floating point
matrices used in FORTM.

iii

The three remaining subroutines are used during the simulation
phase of ALSIM. Subroutine ASSIGN/LOGIC/PVAL/FPVAL is used to
assign values to the active transaction parameters, to set logic
switches, or to obtain a parameter value from thé active transac-
tion. Subroutine ARGERR is called by ASSIGN/LOGIC/PVAL/FPVAL to
print a message when an error in the argument list of one of these
entries is detected. Subroutine BAGS assign the number of bags
to be claimed by the deplaning passenger transaction and generates
random numbers for subsequent use in simulating delivery times.

Several of these subroutines branch to locations or subrou-
tines utilized by the IBM Program Product General Purpose Simula-
tion System V -0S (5734-XS2). The documentation containing des-
criptions of most of the branch addresses is contained in Chapter
12 of the "General Purpose Simulation System V User's Manual"
(SH20-0851). However, the subroutines providing logic set and
reset capabilities in subroutine ASSIGN branch to locations inter-
nal to GPSS-V and could become obsolete if unreleased changes
affecting program performance were performed by IBM. The subrou-
tine XCODE branches to a location within IBCOM and relies on
maintenance of current operational instructions and register

conventions for continued successful operation.

The block diagram in Figqure 1 illustrates the program levels
of ALSIM. Subroutines BAGS, FORTM and CLINK are called by GPSS-V
HELP, HELPA and HELPC blocks, respectively. BAGS is an IBM
System/370 Assembly Language subroutine. The subroutines FORTM
and CLINK are both written in FORTRAN and use CALL instructions
or function references to access pregrams in the next lower
level. With the exception of fhe FORTRAN subroutine MXBASE/
MHBASE/MLBASE, subroutines at the third level are written in IBM
System/370 Assembly Language. Branching to ARGERR from ASSIGN/
LOGIC/PVAL/FPVAL is discussed in the document.

The blocks FORTM, LINKC and CLINK2 require explanation. The
proper name of the FORTRAN subprogram is LINKC and contains the
entry point FORTM. - All calls made to this subprogram from the
GPSS-V programs are HELPA calls to the entry point FORTM. LINKC

iv

is never called explicitly by the main or auxiliary programs.
When the first HELPA call is made to FORTM, this subprogram sub-
sequently calls the assembler program CLINK2. Subprogram LINKC
is then called by subroutine CLINK2. This procedure is only
performed once. Control returns to CLINK2 before the entry point
FORTM is reached. This operation is performed to provide linkage
between FORTM and the GPSS-V programs. Details are explained in

this appendix.

STIATT WVHI0Ud WISTY T 34n9id

LR ERR

ﬁ

wadawadl T 3svamw
191901 JISYSHW
TANAD motssy || rasvexw

- 3009X

ANTINW

INID
L=
NI
MNITD - ——d w1304 S9ve
t ﬁ (AINO z_<§IL
AdvIIxXny
40 NIYW

A-SSdI

vi

TABLE OF CONTENTS

Section
APPENDIX B-1 LINKC (FORTM) SUBPROGRAM OF THE AIRPORT
LANDSIDE SIMULATION MODEL (ALSIM) cveccccececaccaccncaceanans
1.0 INTRODUCTION...2csescass ST e o W e e Ealigiele & el e
2.0 - NONEXECUTABLE STATEMENTS SECTION...:ecsseess W e
3.0 INPUT SECTION..:vasecascacas e e e SRR EEERe § we e e aiaiw
3.1 1Initial Section..... e aieelee * EieieR Sareale & STeieTelE meraTals
3.2 Flight Sc¢hedule Input........ 52 a0 oiale win = PH -
3.3 Time Series Specifications..... s e s e s ans aiieahna > oo
3.4 Airline Data Input...cccccocaces s SESEs oNs = S eEeJeNeNeYe NS
3.5 "Ground Transportation Input....... e s e eeaiticnmenses
3.6 % Preticketed Passenger Input....cccceacaas o inc s
3.7 Walking Time/Distance Override Input..... DS
3.8 Parameter Card Input...ccccceese . Sa] o =E4 . wheewe Wiem
3.9 Bus Schedule Input....cccceeccacnacans . mieERmE o Wi
3.10 GPSS Storage Capacity..cccce.-. ceceasma e e
3.11 Transfer Flight Override Input......... e e e
3.12 Run Title Card Input..c.cseeccecceaacn o Aot BT XE Ne one
3.13 Geometry Input..cececececeocccccccnacacnse el Jopt eme ot
3.14 Flight Schedule Sorting Sectlon..................
3.15 PFacility Sort Section..... sjee exelage SEept =ne N —— A
3.16 Setup Facility Pointer Table Section........ Shihe <at
3.17 Point-to-Point Walking Time Calculation Section..
3.18 Determine Closest Entrance and Exit to Each Point
SectiON..icsvecoseanscaccansacoancnmenscass cseccscacs
3.19 Check for Undefined Facility Sectlon.. o
3.20 Parameter Assignment and End of Input Section....
4.0 MAIN SECTION...vececocascsaascn Cesssccaccnccacanusceas
4.1 Baggage Unload Section..... dine satasasas =asas e
4.2 Baggage Claim Section.......... O T AT -
4.3 CuUusStOmS SeCEiON. csectaasacssascacsososscsascsonncons
4.4 Ground Transportation Mode Section............ Wi
4.5 Rent-A-Car SectiON.isccieccecsccccncocaaa ey
4.6 Exit Section...... P —) P Saetald o e salee
4.7 Immigration Section.........cccc0.s SRS § e e Y B
4.8 Passenger Deplaning Curb SectioN....cceceeceansnn
4.9 Car Deplaning Curb Section......c.:se.. & e e W
4.10 Enplaning Curb Section............. iases iaeniaa %
4.11 Entrance Section...... O - . oo ols BHBEEE U 0 8 P
4.12 Ticketing and Check-in Section....... B P
4.13 Security Section.......ccecicecosnn SR e - 8 WeTeNE
4,14 Gate SeCtiOoN.eeececneesassenscaansnansscsssacnsanas

B-1-20

B-1-20
B-1-20
B-1-20

B-1-22

B-1-22
B-1-23
B-1-24
B-1-25
B-1-28
B-1-32
B-1-34
B-1-37
B-1-40
B-1-44
B-1-48

vii

TABLE OF CONTENTS (CONTINUED)

Section
4.15 Parking Section..... A B wE e R ¢ BeleieE 8 SR
4.16 Transfer Passenger SectioN....... S ez = s T 5
4.17 Transfer Flights SectioN.....eece... JoN: e ;5 5
4.18 Miscellaneous GPSS Error Conditions Section...
4.19 Formatted Report SectioN....cececeeeeens @G 2 5
4.20 Clock Update SectiON.ceeceeeecan. SEe SYWs SHRNAWI: SWavs
4.2]1 SN3PShOtS.eeeeeeecencacesonne » JEEE SN 5 SEaEeY: T %S
4.22 Change Card ProcesSsSinNg..ceececes.. 5] Sfegs avs . ofs WY
4.23 Concession SectionN......... SHe sNeNs s sFe oWalNs aWa SWalk 3 & e

4.24 CONCOUIrSE SECtiON.ceeercececeonccannccaccnsess
4.25 Walking Time Calculation SectioN.....eceeceee..
4.26 Error Abend and End or Program SectionN....e...
APPENDIX B-2 FLOWCHARTS FOR FORTM SUBPROGRAM.t e evvoceeeo.
APPENDIX B-3 LISTING OF FORTM SUBPROGRAM..... ceccssccaas

APPENDIX B—4.ALSIM DOCUMENTATION - SUBROUTINES...cceuee..

FORTRAN SUBROUTINE CLINK..... ceccscecsense cecccsecas
ASSEMBLER SUBROUTINES CLINK1 AND CLINK2

ASSEMBLER SUBROUTINE MNLINK.: .e.cceeoaoeocncecanonces
ASSEMBLER SUBROUTINE XCODE..::ceecaceas-. s eencesenas
FORTRAN FUNCTION....ocuvaa toceceacessacoacscssns ccen
MHBASE/MXBASE/MLBASE

ASSEMBLER SUBROUTINE...... cecceccscces cseaee eescace
ASSIGN/LOGIC/PVAL/FPVAL

FORTRAN SUBROUTINE ARGERR.:e:vceevcaaococennn caseeca
ASSEMBLER SUBROUTINE BAGS:.oececacoesocanons soeecaan

B~4-23
B-4-31

B-4-45

B-4-49

viii

APPENDIX B-1

LINK C (FORTM) SUBPROGRAM OF THE AIRPORT

LANDSIDE SIMULATION MODEL (ALSIM)

B-1-1/B-1-2

1.0 INTRODUCTION

The FORTRAN portion of the Airport Landside Simulation
program is called by the GPSS program to perform four major
functions. These are: (1) the reading of data cards specifying
airport operation; (2) filling GPSS matrices using the input
data; (3) the moving of passengers from node to node by
assigning transaction parameters; and, (4) the formatting of
GPSS and other output statistics as summaries.

This report documeﬁts the FORTRAN program, named
FORTM, and is divided in three sections. The first is the
NON-EXECﬁTABLE STATEMENTS SECTION which contains a description
of all the declarations, equivalence, namelist and data state-
ments needed to define and initialize variables. The second
is the INPUT SECTION which contains a description of how data
is read into the program and the initialization process for
the input and other variables. The third section is called
the MAIN SECTION and contains a description of how the program
handles the various calls from the GPSS'program and assigns new
values for parameters at each type of landside facility.

Flowcharts and a iisting of the program are also

included in the appendices.

B-1-3

2,0 HONEXECUTABLE STATEMENTS SECTION

This section starts with the subroutine LINKC statement
which has the standard GPSS list of values to be passed and
a set of INTEGER, REAL, and DIMENSION cards which set up the
HELPC type link to the GPSS program. Next a list of INTEGER,
REAL, DIMENSION, and DATA statements define and initialize
numerous variables. A data statement then places the names
of all the facility typés in the array FACTYPE. The order
in which the enplaning curb areas are searched for a vacant
space is placéd by a data statement in the afray IEPSCH.

A final data statement then places the full title of the
facilities as written on input data cards in array NAMERS.

Equivalence and namelist statements are described in
Tables 1 and 2 respectively. A set of statement functions
follow which use bases,, addresses, numbers of columns and
row-column identifier of each element ﬁo compute the locations

of the GPSS matrix elements. This section ends with a RETURN,

les)

TABLE 1. EQUIVALENCE STATEMENTS

ARRAY OR SCALAR NAME EQUIVALENCED TO

DUMS (1) Input values to be zeroed before

IDUM1(1 to 21) new input line is read in.

NFASCM (1 to 15, 1) Names of scalars identifying
numbers of facility types.

NFASCM (1 to 20, 2) INDEXF (1 to 20) Index number of

.facility type. AAd facility number
in type for MHS row.

FACQSX (1 to 14) Scalars which contain the base
values assigned each facility
type by the GPSS compiler.

NSORT (Integer®4) NSORTD (1 to 2) (Integer*2)
Allows the section of the program
that sorts the facilities to sort
] MHY9 by facility number and by
facility type in a single pass.

FROMTO (1 to 2) FROM, TO

w

=

un

TABLE 2. NAMELIST STATEMENTS

NAMELIST
NAME USAGE DEFAULTS
AL Airline cards
BU Bus/Limousine Card ARVBUS = 0
DEPBUS = 0
FL Arriving and departing DOM =1
flight cards ’ AIRLIN = DEFLIN
TPAX =0
GE Facility location cards
GT Ground Transportation
cards
ov Walking Time Override
cards
WWGATE =0.0 LFAVFEL =
PA Parameter card GRGATE =0.0 LEAVEC =}8
BOARDT =15 min LEAVEV =10
ERRORS =50
S Storage cards
ST Initial cards SCALE =1
DSTFAC = 1.1
WALKSP = 1.0 meter/sec.
TI % Preticketed card
TR Transfer Flight card ADD = 7200 sec.
DELETE = 180Q sec.
CH Server Chanae
TS Time Series Output

B-1-6

3.0 INPUT SECTION

3.1 INITIAL SECTION

The first statement in this section is an ENTRY state-
ment with the six element array IVALUE passed as a parameter.
The program then branches to the statement number which has
the same value as IVALUE(l).

If IVALUE(l) is 1, the program goes to statement number
1, which is the start of the input section. Variables used
for counters are set to zero and default values are set
to those listed in Table 2, with the exception of those under
namelist FL.

The first input card is then read. If the card is the
JOBTAPE card, a flag is set to indicate that the GPSS auxiliary
program is being used, and the next card is then read. If
this card is a comment card, indicated by an asterisk in the
first column, the next card is read. fhis card, which should
be the INITIAL card, is written to main memory and read with
a namelist format of ST. IThe simulation start and finish
times, default bag claim area DEFBAG, the default airline
DEFLIN, a factor DSTFAC accounting for non-direct paths between
points, a scale factor, and a walking speed are contained on
this card. Subroutine MNLINK is then called to set up the

mnemonic link transfer from either of two calling statements,

depending upon whether the auxiliary or the main program is

u51ng the program. Subroutine CLINK2 is then called to
transfer the address list from GPSS. For the main program,

the contents of the variables containing the default values

for the time of adding, ADD, or deleting, DELETE, from the

transfer flight table in seconds are placed in their respective
savevalues, XFADH and XFDXH. A scaling factor, SCLXH, is
used to allow GPSS transactions to represent N passenger groups.

Starting locations of GPSS matrices are computed using the

functions MHBASE and MLBASE. The contents of the variables
containing the times for the start, START, in hours, and end,
FINISH, in seconds, of the simulation are placed in their

respective savevalﬁes, CLRYE and ENDXF.

The section of the program that is used to read in.the
rest of the cards then follows. The area of main memory that
will contain the input values is zeroed out first. The .
variable TWOWAY is blanked out. A card is then read in, and
the counter, NCARD, for the number of cards read in and the
counter for the number of output lines, LINECT, are incre-
mented. If the counter, LINECT, for the number of output lines
exceeds 50, then the counter is set ba;k to one and the page
title '"INPUT DATA' is printed at the top of the next page.

The line is then printed out with a line number. If the card
is a comment card then the program branches back to the section
that reads in the next card. 1If the card is not a comment

card, the program next branches to the section that handles the

type—of—the input—card. For the geometry input cards the card

B-1-8

identifier is compared with the array FACTYP. When the match-
ing facility is found the program notes the facility type
number, I, and then branches to the geometry input section.

If the card is not a recognized input type the program prints
out an error message; sets an error flag, NERRSW; assigns 1000
to PH1l; and branches back to the section that reads the next

card in.

3.2 FLIGHT SCHEDULE INPUT

The input line is written into main memory and then
read again with a namelist format of FL. The counter, NROW,
for the number of rows in the Flight Schedule Matrix Savevaiue,
MH1, is incremented by one. Next the value of the GATE,
PAX, and TIME variables is checked. If any of these variableé
have a value of zero then the prograﬁ prints an error meésage;
sets an error flag, NERRSW; assigns 1000 to PHl; and branches
back to the section that reads the néx# card in. Next, the
program tests whether the flight is an arrival or departure
flight. If the flight is a departure then the program determines
if both the default airline and the inéut AIRLIN are zero.
If both are zero the progfam proceeds 'as in the previous error
condition. Otherwise the program sets MH1(NROW,l) to 1, to

indicate a departure flight. Next MH1(NROW,2) is set equal to

the input flight number, FLTNO. The program then determines if the

variable AIRLINE has been specified in the input. If it has

L

not, the AIRLIN is set equal to the default airline, DEFLIN.

Then MH1 (NROW,3) is set equal to AIRLIN. MH1(NROW,4) is set
equal to TIME, the scheduled arrival or departure time. MH1
(NﬁOW,G) is then set to time of flight from start in minutes. .
Next, MH1(NROW,7) is set to l, 2, or 3 for DOMESTIC, COMMUTER
or INTERNATIONAL flights respectively. MH1(NROW,8) is set té
aircraft type, AC. MH1 (NROW,9) is next set to the gate number,
GATE. If the input BAG is zero and if it is an arrival flight,

then BAG is set equal to the default baggace area number, DEFBAG.
If BAG is still zero and it is an arrival flight, then the program

prints an error message; sets an error flag, NRRSW; assigns

1000 to PH1; and branches back to read in the next card. If BAG
is non-zero, MH1 (NROW,12) is then set equal to BAG, the baggage area

number. If the SCALE is not. equal to 1, then MHI1 (NROW, 10). is
set equal to PAX, the number of terminating or originating
passengers on the flight, divided by SCALE plus 0.51 to round
to a whole integer; and MH1 (NROW,11) is set equal to TPAX(1l),
the number of transfer passengers in the flight, divided by
SCALE plus 0.51. If the scale is equal'to 1 then MH1 (NROW,10)
and MHl(NROW,ll) are set eéual to PAX amd TPAX(1l) respectively.
For simulations of a single concourse, with éransfer

passengers originating on other concourses, the input value

TPAX(2) is placed in MHI1(NROW,13). Tf transit passengers are
simulated, TPAX (3) is placed in Mm1 (NROW,16). These two

duantities are scaled as PAX and TPAX-(3). The program

Ja

then branches back to the section that reads in the next card.

B-1-10

3.3 TIME SERIES SPECIFICATIONS

The program writes the input line to main memory and
reads the record with namelist name TS. Values of GPSTO, GPQUE
or GPHALF elements are read into their respective array.

These values are the absolute numbers of the GPSS storages,

queues, or halfword savevalues selected for time series print-
outs. Flow and queue length values are produced periodically
during this simulation run for‘the specified GPSS storages and
queues. GPSS halfword savevalues are also output and are used

to represent flow at specified GPSS program areas.

3.4 AIRLINE DATA INPUT

If the jobgape flag is set, the program branches back to
the section that reads in the next card. If the jobtape flag
is not set, the input line is then written into main memory
and read with a namelist format of AL. For each airline, J,
specified, MH2(J,1l) is set equal to EPCURB, the enplaning curb
number; MH(J,2) is set equal to the percent of preticketed
passengers using express check-in times 10, EXPCHK*10; and MH2
(J,3) is set equal to BUSTOP, the bus stop area number for
enplaning passengers. The program next branches back to the

section that reads in the next card.

3.5 GCROUND TRANSPORTATION INPUT

Input variables are first initialized to zero. The program
writeé the input line to main memory and reads with a namelist
format of GT. All variables read in are divided by 100 to

obtain percentages. The variable I is set equal to 1, 2, or 3

B-1-11

for DOMESTIC, COMMUTER or INTERNATIONAL flights respectively.
If the jobtape flag is set, the program places the cumulative
bercentages for private car, rented car, bus and taxi respec-
tively for the auxiliary program in ML2(I,1 through 4). 1If
the jobtape flag is not set, the program places the cumulative
percentages for, rental, bus, and taxi respectively with pri-
vate car excluded in ML2(I,?2 through 4). The program then

branches back to read in the next card.

3.6 XPRETICKETED PASSENGER INPUT

The program wrltes the input line to main memory and
then reads with a namellst format of TI. The program then
places in MH4(1 through 3, 1) the Percent of preticketed
passengers*10 for DOMESTIC, COMMUTER, and INTERNATIONAL flights
respectively. Next, the program places in MH4 (1 through 3, 2)
the percent of preticketed direct *100 divided by % preticket--h
ed if both the % Preticketed variable and the % preticketed

direct variables are greater than 0. The program then branches

back to the section that reads in the next card.

3.7 WALKING TIME/DISTANCE OVERRIDE INPUT

If the jobtape flag is set, the program branches
back to the section that reads in the next card. If the job-
tape flag is not set, the program writes the input line to
main memory and reads it with a namelist format of OV. If the
input walking time, TIME, is equal to zero, which indicates
that the distance, DIST, was input instead, TIME is set equal

to DIST/WALKSP, the walking distance dixided_hy_the—waéking

B-1-12

speed. The program then places the walking time, TIME in MH6
(FROM, TO) and MH6 (TO, FROM). The program then branches back

to the section that reads in the next card.

3.8 PARAMETER CARD INPUT

If the jobtape flag is set, the program branches back to
the section that reads in the next card. If the jobtape flag
is not sét, the program writes the input line to the main memory
and reads in the variables witﬁ a namelist format of PA. The
program then branches back to the section that reads in the next

card.

3.9 BUS SCHEDULE INPUT

If the jobtape flag is set, the program branches back to
the section that reads in the next card. If the jobtape card
is not set, the program writes the input to main memory and
reads with a namelis£ format of BU. The program then places
in savevalue ABUXH, ARBUS*60, the interval in seconds between
bus arrivals. Next, the program places'in savevalue DBUXH,
DEPBUS*60, the interval in seconds between bus departures. The
program then branches back to the section that reads in the next

card.

3.10 GPSS STORAGE CAPACITY

If the jobtape flag is set, the program branches back to
the section that reads in the next card. If the job tape flag
is not set, the program writes the input to main memory and
reads with a nahelist format of S. For each storage specified

on the input card the number of available units for that storage

B-1-13

is set equal to the input specified. The program then branches

back to the section that reads in the next card.

3.11 TRANSFER FLIGHT OVERRIDE INPUT

If the jobtape flag is set, the program branches back to
the section that reads in the next card. -If the jobtape card
is not set, the program writes the input line to main memory
and reads with a namelist form;t of TR. If the input variable
ADD is greater than zero, then the time for adding a flight to
the transfer flight table in seconds, ADb*GO, is placed in
savevalue XFAXH. If the input variable, DELETE, is greater
than zero, then the time for deleting a flight from the trans-
fer flight table in seconds, DELETE*60, is placed in savevalue
XFDXH. The program then branches back to the section that

reads in the next card.

3.12 RUN TITLE CARD INPUT

If the jobtape flag is set, the program branches back to
the section that reads in the next cardi If the jobtape flag
is not set, the program determines if there are more than 5
title lines. 1If there are, an error meésage will be written
stating that only 5 title lines can be Ainput and that the
current line will not be used, and then the program branches
back to the section that reads in the next card. If the number
of ﬁi;le lines does not exceed 5, then the program increments
the counter, NTLINS, for the number of title lines by one.
Next, the input line is written to main memory and read into

array ITITLE. The program then branches back to the section

that reads in the next card.
B-1-14

3.13 GEOMETRY INPUT

If the jobtape flag is set, the program branches back to
the section that reads in the next card. If the jobtape flag
is not set, the element of FACOSX corresponding to the facility
type number, I, is obtained. This element is the GPSS identi-
fier number for the first queue-storage entity of this type.
Two (2) is then subtracted from this number to aid in acceséing
the Nth facility of this type. This is performed for two reasons,
each requiring a subtraction by unity. '

This value is first decremented by one so that the Nth
facility of a class may be directly referenced if the value of
N is one or greater. If M represents the number of the first
facility of the Ith class, the Nth facility is identified as
the M+N-1 landside facility. One is subtracted from M
for convenient reference. For example, if the gates have been
assigned storage numbers 25 through 42 in the GPSS program
and the variable GAQSL or M, representing the first gate
facility, is also defined.as 25, subtraéting one from this wvalue
allows the referencing of the Nth entity of this type, where,
in this example N ranges from 1 to 18. 'Thus 24 + N identifies

the GPSS storage number for the Nth gate.

The second value.of one is subtracted becéuée ofAthe‘-
nature of addressing GPSS arrays containing entity information.
One objective of the facility data card is to provide thé GPSS
Program with the number of available service units at a
particular facility. This is performed by placing the number

of servers from input data into the standard array ISTO. The

B-1-15

location of the element is computed in FORTRAN. When the Nth
member of a specific entity type is addressed, the formula for
locating the subscript of the ISTO matrix contains an N-1 term
when referring to the Nth entity index number. To continue
the above‘example} the subscript K, of ISTO, when used in
reference to the Nth gate, is given by M+N-2 or 23+N.

Following the location of the ISTO MATRIX, the program sets
the variable NOFAC to the value I, the number of the facility type.
The program then blanks out long facility name titles if necessary.
Next, the input line is written to main memory and read with a name-
list format of GE. If the error flag, NERRSW, is set, the program
branches back to the section that reads in the next card. 1If the
input value of the X or Y coordinate is not equal to 2zero, the values
are placed in MH3(I, i to 2) respectively, where T is the point num-
ber. If the exit point, EXITPT, or entrance point, ENTRPT, are
specified as other than the nearest one to the Ith point, they are
entered in MH3(I,3) and MH3 (I,4); otherwise the program will later

compute these,
The program then processes from one to four facilities of one

type which are allowed on one input line. For each faczllty

specified on the input line, the counter for the total number
of facilities NGEO, is incremented by 1, and the counter for

v ———— . - —

the number of faczlltles of a glven type, NFASCM(NOFAC (1), is
also incremented by 1. For each facility, MHS (NGEO, l) is set

equal to the facility type NOFAC; MH9(NGEO,2) is set équal to

the facility number in type, FACNO(I); and MHY (NGEO,3) is set equal

to the point number, POINT, respectively. If the point number

B-1-16

of the facility being processed is greater than the previous
maximum point number, MAXPT, then the maximum point number is

set equal to the current point number. If a size for the facil-
ity is nonzero, SIXE (I), the number of available units in storage
for that facility is set equal to ISTO(k). For a zero value of
SIZE (I), the program assigns the GPSS default value for storage
size.

When enplaning and deplaning curbside facilities are being
processed, sizes of each are divided by the scale factor and
ISTO(k) is redefined by the result. For each of these facility
tyves, storages are designated in the GPSS program for double
parking ané queuing. The sizes of each storage are specified
by input variable DPARK and CURBQ, respectively. When an enplaning

or deplaning curbside data card is processed, the double parking

and gueue storage numbers, K, are calculated and ISTO(k) is made
equal to DPARK or CURBQ. A default value of one is used if
either size is zero. ' .

Parameters specific to each facility type are equivalenced
to elements of the array IPARAM. These are placed in columns
4 through 6 of MHS9.

Terminal entrance and.exits are assumed to be bi-directional
unless the parameter, TWOWAY = NO, is specified on the data
card. If the facility tyvre is not an entrance or an exit, the
program branches back to the section that reads in the next input

card. When the facility type is an entrance or exit, then the

program determines if the variable TWOWAY is set equal to 'NO'.

B-1-17

TWOWAY can be set to 'NO' by the input line, which means that
the entrance or exit specified is only an entrance or an exit,

or TWOWAY can be set to 'NO' by the program to indicate that

the program has already created a side-by-side entrance/exit for
this facility. If TWOWAY is 'NO' then the program branches back-

to the section that reads in the next input line. For TWOWAY

not equal to 'NO', and an exit card input, the variable for
the facility type, I, is set equal to 6, the number for an
entrance.‘ If TWOWAY is 'NOl; and an entrance card is input,
the variable I is set equal to 7, the number for an exit. The
program sets TWOWAY equal to 'NO' and branches back to the
start of the Geometry Input Sectinn to define the other side

of the entrance/exit pair.

3.14 FLIGHT SCHEDULE SORTING SECTION

The program branches to this section when the end of file
is encountered when reading in the input line. If the error
flag, NERRSW, has been set then the proéram branches to state-~

ment number 99999 which is a RETURN. The flight schedule in

MH1 is sorted by time after simulation start in column 6. The
value -1, is then placed in MH1 (NROW+1,1l) to indicate the end
of the flight schedule. If the jobtape flag is set, the program
writes the message 'END OF INPUT DATA' and branches to state-
ment number 99999 which is a RETURN. If the jobtape flag is

not set then the program goes to the FACILTIY SORT SECTION.

B-1-18

3.15 'FACILITY SORT SECTION

The flag, NSWTCl, is placed in a reset condition, then the
program sorts the facility table, MH9, by facility type and
number in type. Facility type and number in type are sorted
in one pass because the type and number for each entity are
placed in one word, NSORT. Following this sort, NSTCW1l is
tested. If it is sét, then the program branches to the SET UP
FACILITY POINTER TABLE SECTION. If the flag, NSWICl, is in a
reset condition the program determines if any numbers have been
skipped or if a duplication of facility numbers exists in the
defining of facilities iﬁ MH9. If there have been skipped
facility numbers the program creates dummy facilities in MHS
using the numbers that have been skipped. Doubly defined facil-
ities terminate the simulation. The program sets the flag,
NSWTCl, and branches back to again sort MH9 and performs the
subsequent test on NSTWCl. If there are no skipped facility
numbers in MH9, the program then goes to the SET UP FACILITY

POINTER TABLE SECTION.

3.16 SETUP FACILITY POINTER TABLE SECT;ON

This section sets up the facility pointer table, MHS8, which
is the same as the array NfASCM. The program places in MHS (1
through 20,1) the number of the facility in its type, from
NFASCM I,l). The program then places in MH8 (1 to 20,2) the
index number of the facility, NFASCM(I,2), which is the number
of rows in MHO9 before this facility type. The program then

goes on to the POINT-TO-POINT WALKING TIME CALCULATING SECTION.

B-1-19

il 7 POINT-TO-POINT WALKING TIME CALCULATION SECTION

The program calculates the walking time for each pair of
points and stores it in MH6. TIf both the X and Y coordinates
are zero for a point, indicating a possibly undefined point,
then a message is written indicating the point with (0,0)
coordinates. If the walking time for a point-to-point pair
was previously input in the WALKING TIME/DISTANCE OVERRIDE
INPUT SECTION then the value for that point-to-point pair is
left as defined. The program then goes on to the DETERMINE

CLOSEST ENTRANCE AND EXIT TO EACH POINT SECTION.

3.18 DETERMINE CLOSEST ENTRANCE AND EXTIT TO EACH POINT SECTION

The program determines the closest entrance and exit to
each point and stores it in MH3 (L to MAXPT, 3 to 4) respectively.
If the closest entrance or exit was previously defined in the
GEOMETRY INPUT SECTION then the value for that entrance of exit
is used. The program then goes on to the CHECK FOR UNDEFINED

FACILITY SECTION.

3.19 CHECK FOR UNDEFINED FACILITY SECTION

The program checks the array, NFASCM, to determine if any
facilities have not been dgfined. For undefined facilities the
program writes a message which includes'the statement that the
following facilities are undefined, the list of the undefined
facilities, and the statement that execution continues. The

program then goes on to the END OF INPUT SECTION.

3.20 PARAMETER'ASSIGNMENT AND END OF INPUT SECTION

The program sets the savevalue, BDTXE, equal to the

B-1-20

boarding time, BOARDT, in seconds. The latest times of transit
and transfer passengers for leaving lobby and concessions,
LEAVEL and LEAVEC, and the spread, LEAVEV, of the uniform

random distribution modifying these times are converted from
minutes to seconds. Percentages of well-wishers proceeding to
the gate, vehicles proceeding from enplaning curbside to parking
and percentages of enplaning ticketed passengers using curbside
check-in are multiplied by 10 and converted to savevalues,
WWGXH,_CPKXH, and CRBXH respectively.

The percentage of terminating passengers with greeters,
GREET, is divided by 100 and placed in the floating point
savevalue GRTXL. The percentage of greeted terminating pas-
sengers greeted at curbside, CRBGT, is divided by 100 and
placed in the floating point savevalue CGTXL. The percentage
of greeters proceeding to the gate, GRGATE and the percentage
of greeters proceeding to the parking facility and deplaning
curbside for passenger pick up, PRKCRB are divided by 100 and
assigned to GRGXL and PGBXL respectivel&. The message, 'END
OF INPUT DATA' is written, and the program branches to state-

ment number 99999, which is a RETURN.

B-1-21

MAIN_SECTIOi

4.1 BAGGAGE UNLOAD SECTION

This section is called once for each arriving flight.

The section first scans the matrix savevalue MH7, which was
built by successive calls to 'BAGS' by the passenger trans- o
actions. Each passenger bag generates a random number from

1l to 64. The matrix MH7, which is a single column matrix

of 64 rows, contains a count of the number of times each
random number was ‘generated for an arrivinglflight. MH7 is
examined row by row in ascending order and is zeroed out after
examination. For each row, the program retains a cumulative
sum' of bags. This cumulative sum is tested in steps of ten
bags. Each time a value of ten is added to the bag count the
value of the random number, which is the MH7 row number, is
assigned to byte parameter number NOPB, which is initialiy

set to forty. NOPB is then decremented by one. If a value has
been assigned to byte parameter number 1 (NOPB = 1), then the
value 64 is assigned to byte parameter number 1 and the
program branches to 99999. This is done to insure that NOPB

is not decremented to zero and then neéative numbers, which would
mean the program would atﬁempt to assign a value to a byte
parameter with a zero or negative number.

After all the rows of MH7 have been examined, the program
determines whether the value 64 was assigned to the byte
parameter which was assigned last. If this is not the case,
the value 64 ié then assigned to the byte parameter which

was assigned last. This is done in order to cover the case

B-1-22

when the cumulative count of bags is not a multiple of ten.
This would cause the bags in the cumulatiye count, after the
last multiple of ten, to not have their random number assigned
to a byte parameter. The assigning of 64 to the last byte
parameter assures that all bags are accounted for and that all
passengers with bags will be unlinked to the GPSS BAGGAGE CLAIM

SECTION. The program then branches to 99999.

4.2 BAGGAGE CLAIM SECTION

This section is called-once for each deplaning passenger
who has a bag. The section first determines the MH9 row
number, J, by adding the index number for baggage claim areas,
INDEXF(4), to the number of the baggage claim area wanted,
MH1(IV3,12). Next, .the point number of the baggége claim area'
is determined, MH9(J,3), and placed in NPTTO. The program then
assigns a statement number, 309, to NEXT which will be used to
return from the WALKING TIME CALCULATION SECTION. The program
then branches to the WALKING TIME CALCULATION SECTION.

After the walking time is calculated, the program branches
back to statement number 309, Halfword parameter 2 is assigned
the point number, NPPTO, for the baggage clgim area. Bwte
parameter 1l is assigned the process code for the baggage claim
area, 4. Halfword parameter 7 is assigned the MH9 row number,

J. The program then branches to 99999,

B-1-23

4.3 CUSTOMS SECTION

This section is called once for each passenger deplaning
from an international flight. The section first determines
the associated customs facility number L, from MH9 (IV3,4). The
MH9 row number for the associated customs facility, J, is then
determined by adding the associated customs facility number,
L, to the index number for customé facilities, INDEXF (5). - Next,
the point number, NPPTO, of the associated customs facility
is then assigned from MHY9(J,3). The program then assigns a
statement number, 313, to NEXT which will be used to return from
the WALKING TIME CALCULATION SECTION. The program then branches
to the WALKING TIME CALCULATION SECTION.

After the walking time is calculated, the program branches
back to statement number 313. The storage and queue number, M,
is determined by adding the associated facility number, L, ané
the base value for customs facilities, CUSQS, minus one. The
subtraction is done because the variable CUSQS contains the
number of the first storage for customs, thus one is subtracted
in order that the number of the customs facility can be added
to CUSQS in order to get the correct storage number. Halfword
parameter 2 is assigned the point number, NPPTO. Halfword
parameter.s is assigned the storage gueue number for customs,
M. Halfword parameter 7 is assigned the MHY9 row number, J,
for the associated customs facility. Byte parameter 5 is
assigned the process code for customs, 5. The program then

branches to 99999.

B-1-24

4.4 GROUND TRANSPORTATION MODE SECTION

This section is called once for each passenger on each
arrival flight by the main program and once for each passenger
on a departing flight, by the auxiliary program. The section
first determines if the jobtype flag, JOBT, has been set. If
set, meaning that the auxiliary program is using the
FORTRAN program, the program sets ehe variable K to 1, which
indicates that the program will include the private car mode
in the list of selectable transportation modes. The variable
L is set to 0, and then the program determines if the
array value for % preticketed, MH4(IV4,l), is less than the
variable IV2., The variable IV2, which is the same as IVALUE(2),
is set in the auxiliary program and passed to the FORTRAN
program as the random number, RN4., If the % preticketed value
is less than the random number, IV2, the flag L is set to 1,
which indicates that the passenger is not preticketed. The
program then goes to the next statement which is at statement
number 701.

If thé jobtype flag, JOBT, is not set, which means that
the main GPSS program is using the FORTRAN program, the
variable K is set to 3, which indicates tha£ the program
section will handle the private car mode of transportation

separately from the other modes of transportation.

B-1-25

At statement numbgr 701,-the random number in IV3, which

is the same as IVALUE (3), is normalized to a value between 0

and 1, and placed in TEMPCT. The program then determines whicﬁ_-
cumulative percentage for the different types of éransportation
that the normalized random number is less than or equal to,

but greater than the cumulative percentage for the prev10us

mode of transportation. The modes of transportation in thelr
order of being tested are the following: rental car,
bus/limousine, and taxi which have the codes 3, 4 and 5,
Arespectively. If the tes£ is satisfied for a mode of transporta-
tion then byte parameter 6 is assigned the value of J, which is
the code for the mode of transportation for that passenger.

Byte parameter 9 is assigned the value of L, which is the flag
for whether the passenger is preticketed or not. This byte
parameter is only used for this purpose in the auxiliary program
and not in the main Gpss program.

If the test is not satisfied for any oflthe modes of trans-

po:tation, that is, the ndrmall-ed random number is not less
than or equal to any of the cumulative percentages for the
different types of transportation; the error, count, NERCNT,
is incremented by 1. If the error count is equal to the maximum
allowable number of errors, ERRORS, then the program branches

to 999, If the error count is not equal to the maximum number

of errors, then the message 'PROBLEM IN GROUND TRANSPORTATION

B-1-26

MODE LOGIC' is written. The program then assigns byte parameter
6 the value of 4 as a default which is thé code for bus/limousine.
BYTE parameter 9 is then assigned the value of L. The same holds
true for this assignment of byte parameter 9 as the previous
assignment of byte parameter 9. The program then branches to

statement number 99999.

B-1-27

4.5 RENT-A-CAR SECTION

This section is called each time a deplaning p;ssenger
goes to a car rental agency. This section first determines
which rows in MH9 are car rental facilities by using the
variable INDEXF(1ll), the index for car rental agencies in MH9,
and NORENT, the tot;l number of car rental facilities. The
variable I is set to the MH9 row nﬁpbér which has the first
car rental facility. The variable J is set to the MH9 row
number which has the last car rental facility. Since
each facility corresponds to a counter, several of which
can belong to the same car rental agency and have the same
car rental agency code number, this section must therefore
scan through the car rental facilities in MH9 to determine
which counter with the car rental agency code IV3
has the shortest walking time from the deplaning passenger's
current position. The variable LTEMP is used to keep the car
rental agency facility number. If the value in MHI (N, 4),
which is the car rental agency code for car rental agency facility
number LTEMP, is equal to the car rental agency code, IV3, of
the car rental agency that is wanted, then the program compares
the walking time of that facility to the pr;vious lowest walking
time of a car rental facility with the correct car rental
agency code. If the car rental facility that is being tested
has a shorter walking time, then its point number is saved in

MINPTO, its MH9 row.number is saved in ITEMP3, and the car

rental facility number is saved in L.

After the scanning is finished, the program determines
if MINPTO is greater than zero. If the variable MINPTO is
greater than zero then at least one facility was found with
the correct car rental process code. The program then sets
the variable NPTTO to MINPTO, the point number of the car
agency facility with the shortest walking distance. The
statement number 326 is then assigned to the variable NEXT,
and the prog;ﬁm then branches to statement number 950 to
determine the walking distance.

After the walking distance is determined, the program
branches back to the statement number 326 and the program then
determines the queue-storage number, M, of the car rental agency
facility picked by adding the variable RCRQS to L, and subtracting
one. One is subtracted because the variable RCRQS, which
is passed from the GPSS program, contains the number of the
first queue and storage assigned to a car rental agency facility,
thus one must be subtracted from it in order to add the facility
number of the car rental agency wanted to gét the correct queue
Storage number. ;

The program then assigns to halfword parameter 2 the value
of variable MINPTO, the point number of the car rental agency
with the minimum walking distance. Halfword parameter 5 is then
assigned the value of variable M, which is the queue-storage
number of the car rental agency facility that was picked.

Halfword parameter 7 is then assigned the value of variable

B-1-29

ITEMP3, which is the MH9 row number of the car rental agency
faciliﬁy that was picked. Halfword parameter 1l is then assigned
the value 11, which is the process code for the car rental agency.

If the variable MINPTO is equal to zero then no facilities
were found with the correct car rental Drocess code. The program
then scans the car rental facilities and determines if any of
the car rental agency facilities have been defined. This is
done by determining if the cér rental agency code is greater
than zero. If no car rental agencies are defined, the program
checks an error flag, NRCRSW. If the error flag is equal to
1, the program branches to statement number 99999 in order not
to repeat the error message. If the error flag is not equal
to 1, the program sets the error flag NRCRSW to 1, and writes the
message 'NO CAR RENTAL FACILITIES DEFINED. THIS MESSAGE WILL -
NOT REPEAT.', and branches to statement number 99999,

If, during the scan, a car rental facility is found to be
defined, which means it has a car rental agency code greater
than zero, then the point number, NPTTO, is obtained from MH9-
(N,3), and the MHY9 row number, ITEMP3, is obtained from N,
then the message 'NO FACILITY DEFINED FOR C?R RENTAL AGENCY CODE,
IV3, ' 'FACILITY FOR AGENCY CODE', K, 'USED' is written, the error count
NERCNT, is then incremented by 1. The program next determines
if the error count is greater than the maximum allowable error
count, ERﬁORS. If the error count is greater, the program
branches to statement number 999, the section which will stop

the simulation because of the cumulative error count. If the

€rror count is not greater, the program sets the variable IV3

B-1-30

to K, the code for the alternate car rental agency and the
variable MINPTO is set to NPTTO, the point number of the
alternate car rental agency. The program then branches to

statement number 326.

B-1-31

4.6 EXIT SECTION

This section is called each time a deplaning passenger
is to go through an exit to the deplaning curb. The proaram

first determines if the next address for the passenger is the

deplaning curb, DPLCO, a return to the control section, CGTRO,
which will immediately branch to DPLCO, or the parking garage,
GRTO0. If the address is not DPLCO, CGTRO or GRTOO, then the
program will set I to the value of byte parameter 1 and the
message 'ATTEMPT TO EXIT TO BLOCK NUMBER', IV4, 'VIA EXIT
CHECK FUNCTION', I, will be printed. The error count,

NERCNT, is incremented by 1, and then tested to determine

if it is equal to the maximum allowable number of errors,
ERRORS. If NERCNT is equal to ERRORS, the program branches to
999, the section which will stop the simulation because of the

cumulative error count. If NERCNT is not equal to ERRORS,

the proagram branches to 99999,
When the addrees is either DPLCO, CGTRO, or GRTOO, the pro-

gram determines if the current process, IV3, is for a gate,
bagoage claim, customs, rent-a-car, or secuqity which have
process numbers 1, 4, 5, 11, or 3, respectively. The program
branches to the part of this section corresponding to the
current process number. Regardless of the process number,
each program section that is branched to has the same logic.

The reason for this is so that any future changes for one type of

facility program section could be easily modified without

B-1-32

interfering with the logic'for the other types of facilities.
The logic for each type of facility is as follows:
fhe variable J is equated to the value of MHY
(Iv5,3) , which is the point numbgr of the
passenger's current location. The index, IV5, is
the MHY9 row number of the last facility.
The variable NPTTO is then set to the value
of MH3 (J,3), the point number ' of the exit closest to the
facility. The statement number following the next
instruction is assigned to the variable NEXT.
The program branches to statement number 950
to determine the walking time te the exit.

After the walking time is determined, the program
branches back to the statement following the

'GO TO 950' statement. Halfword variable 2

is then assigned the value of NPTTO, the

point number of the nearest exit. The program

then branches to 99999.

B-1-33

4.7 _IMMIGRATION SECTION

This section is called for each deplaqing passencer
from an international flight. The variable NPTFM is set
equal to IVALUE(2), the point number of the current location.
The variable -IV3 is set to IVALUE(3), the gate number. The
variable L is then set to MH9(IV3,5), the number of the
designated immigration facility for that gate. Gate index
numbers do not need to be determined because the gate
facilities are the first type of facility in MH9, and their
index number would be zero. If L is greater than zero then
the designated immigration facility for that gate has been
defined, and the program branches to statement 335 to con-

tinue normal processing.

At statement number 335 the variable J is set to L plus
IJDEXF (13), the index number for immigration facilities. This
determines the MHY row number for the immigration facility
specified. The variable NPTTO is set to MHI(J,3), the point
number of the specified immigration facility. Statement
number 338 is assigned to the variable NEXT, .and the program
branches to statement number 950 to determine the walking time.

After the walking time is calculated, the program branches

back to statement number 338. The variable M is then set to

IMMOS plus L minus 1 where IMMOS, which is rassed from the

GPSS program, is the number of the first gueue-storage used

for immigration faciiities. M is then the number of the

B-1-34

queue-storage associated with immigration facility number
L. The reason for subtracting 1 from L is the same for the
setting of the vatiable M in the RENT-A-CAR SECTION, Section
4.5. Halfword parameter 2 is then assigned the value of
NPTTO, the point number of the designated immicration facility.
The queue storage number, M, is placed in halfword parameter 5.
Halfword parameter 7 is set to the value of J, the MHS row number.
Byte parameter 11 is assigned the value 13, which is the process
code for immigration facilities. Halfword parameter 8 is also
set to J, the MHY9 row number, so that the MHY9 row number of
the immigration facility can be passed back to the FORTM .
program from the Customs Section of the GPSS program. The
value of J in PH7 is lost before the transaction gets to
the Customs Section of the GPS8 program. The program then
branches to statement number 99999. |

If the value of L is not greater than zero then one
designated immigration facility has been defined for that gate
and the program starts checking for errors. The program
then determines if the variable NOIMMI, which is the number of

immigration facilities, is greater than zera. If NOIMMI is not

greater than zero, then no immigration facilities have been
defined and the program writes the message, 'PASSENGER ATTEMPTED

TO GO TO IMMIGRATION. NO FACILITIES DEFINED'. The error count,

NERCNT, is incremented by one and the program determines if

the error count is equal to the maximum allowable number of

errors, ERRORS. If the error count is egual to ERRORS then

B-1-35

the program branches to statement number 999, the section which
will stop the simulation due to the cumulative error count If
the error count is less than ERRORS, the program branches to
statement number 99999,

If the variable NOIMMI is greater than zero then there

is at least one defined immigration facility, even though the
designated immigration facility for the particular gate is

not specified. The variable J is éet to INDEXF (13), the index
number for immigration facilities. The variable K is set to J
plus NOIMMI, to obtain the MH9 row number of the last immigration
facility. J is then incremented by 1 to obtain the MHY9 row num-
ber of the first immigration facility. The program then tests each
immigration facility in turn, keeping the variable I as the
number of the facility, to determine the first immigration
facility that has a point number, MHO (N,3), which is greater

than zero, indicating that the facility has been defined.

L is then set to the point number of the chaosen immigration
facility. The message, 'NO IMMIGRATION FACILITY DEFINED FOR
GATE', IV3, L, 'CHOSEN', is then written. Qhe error count,
NERCNT, is then increménﬁed by one. The program then determines
if the error count is equal to the maximum allowable error

count, ERRORS. If the error count is equal to ERRORS, then

the program branches to statement number 999. If the error

count is less than ERRORS, the program continues to the next

statement which is at statement number 335,

B-1-36

4.8 PASSENGER DEPLANING CURB SECTION

This section is called once for each deplaning passenger
‘proceeding to the deplaning curb. The variable IV2 and IV3
are set to NPTFM and IVALUE (3) which are the respective
current précess code and the previous facility nwaber for
facilities other than an exit. The variable IVS5 is set to
IVALUE (5), the flight table row nﬁmber. The program
determines if the current process céde, IV3, is for a gate
baggage claim, customs, rent-a-car, or check-in, which have
process cedes of-l, 4, 5, 11, and 14 resvectively, and are
the only facility types that would send a passenger to curbside,
If the current process code is not'one of these facility types
then the program starts an error processing procedure.

The variable I is set to byte parameter 1, which is the process

functioﬁ'hﬁmber. The message, 'ATTEMPT TO EXIT TO DEPLANING
CURB FROM FACILITY TYPE', FACTYP (IV3), 'CHECK FUNCTIDN', I,
is written. The error count, NERCNT, is theﬁ incremented by
one and tested against the maximum allowable number of errors,
ERRORS. If the error count is equal to ERROﬁS, the program
branches to statement number 299. If the error count is less
than ERRORS, the program branches to statement number 99999.
If the current process code, IV3, is 1, for a gate

facility, then the program branches to statement number 600 :

where the variable I.is set to MH1 (IV5, 12), which is the

baggage claim area number specified for that flight, plus

INDEXF(4), the index number for baggage claim areas.

B-1-37

This obtains the MH9 row numbér for the smecified baggage claim
area. The variable ITEMP]l is then set to MH9(I,4), the deplaning
curb facility number for that baggage claim area. The program
then branches to statement number 690.

If the current process code, IV3, is 4, which is for a
baggage claim area facility, then the program branches to state-
ment number 605 where the variable 'I is set to IVALUE(4), which
is the MHY9 row number for the previous facility. The variable
ITEMPl is then set to MHY9(I,4), which is the deplaning curb
facility number for that baggage claim area. The program
then branches to statement number 690.

If the current process code, IV3, is 5, for the custems
facility, the program tben branches to statement 610 where
the variable I is set to IVALUE(4) which 4is the MHS row
number for the previous facilitv. The variable ITEMP1 is

then set to MH9(I,4), which is the deplaning curb associated

with the Customs facility, The program then branches to state-
ment number 690.
For the current process code, IV3, equal to 11, the car rental
facility, the program branches to 615 where FTEMPl is set
to MH9(I,5), the parking facility number associated with the
rent-a-car agency. The program then branches to statement 690.
When IV3 is 14, the transaction currently processed repre-
sents a depianing passenger without baggage and will either be
met by greeters at curbside or will use a bus or taxi. This

passenger is routed to the airline check-in facility and then

B-1-38

to the enélaning curb. At statement 620 the program obtains
the airline number from MH1(IV5,3). The corresponding
enplaning curbside number is obtained from MH2(I,l) and

the facility number J, for the enplaning curbside is obtained
by adding INDEXF(8) to this. &he program then branches to 692.

At statement number 690, the variable J is set to the
variable ITEMPl nlus INDEXF(1l2), the index number for the
deplaning curb facility specified. The point number of the
deplaning curb is placed in NPTTO at statement 692. The
program then assigns the statement number 691 to the variable
NEXT. The program branches to statement number 950,
where the walking time is determined.

After the walking time is determined the program returns
to statement number 691. Halfword parameter 2 is then
assigned the value of NPTTO. Halfword parameter 7 is assigned
the value of J, the MH9 row number of the deplaning curb area.
Byte parameter 11 is assigned the value 12 which is the process
code for a déplaning curb. The program then branches to state-

ment number 99999.

B-1-39

4.9 _CAR DEPLANING CURBE SECTION

This section'.is called by greeter transactions for passen-
gers to be met at curbside and those who have met passengers
inside the terminal. It assigns transactions to curbside,
double parking , or queue areas dependent upon current con-
gestion.

The variable IV2 is set to IVALUE(2), the airline number.
IV3 is set to IVALUE(3), the MHl row number, and IV4 is assigned
IVALUE(4), the number of-bags of the transaction representing
the terminating deplaning passenger. For IV4 not equal to
zero the program branches to 700.

When IV4 is 0, indicating no bags, the greeter transaction
is routed to the enplaning curb for passenger meeting. The
number of the enplaning curb, MH2(IV2,l), assigned to the.
airline is placed in the variable M. If IVALUE(S) equals one,
indicating a greeter that has recirculated and parked, the
program branches to 716. _

The program then performs a curb search for an open space.

For a fixed value of M, the matrix IEPSCH(K,M), provides the

seguence of enplaning curbside numbers to be searched for an

open space. A DO loop, ending at statement 713, with a range
from 1 to 10 for the index K, executes this search. The variable

L is set to IEPSCH(K,M) and first tested to determine if it

exceeds the number of input enplanina curbside facilities,

NOENPL. Values of L greater than NOENPL are skipped by

branching to 713,

Allowable values of L ére added to INDEXF(8) to determine
the facility number ITEMPl. To determine if this facility has
been input, the program tests MH9 (ITEMPl,3) for zero. If unde-
fined, this facility number is skipped. For valid facility
numbers the program calculates the storage number J from EPCBS +
L-l. To examine the availability of the curbside storage, the
subscript ITEMP3 is éalculated using the expression 11*(3-1)+2.
The GPSS reference word ISTO(ITEMP3) is tested. When the value
ISTO(ITEMP3) is zero, indicating no enplaning curbside spaces
available, the program branches to statement 714 to begin
searching for a double-parking slot at the .same curbside. If a
non-zero availability value is present, the value J is assigned
to PH6 and PBlO is set to 1 indicating a curbside parking loca-

tion. The program branches to 99999 for a return to GPsSSs..

At statement 714 the storage number, J, is calculated
from EPDPS + L-1l. The subsc;ipt ITEMP3 is again calculated by
the expression 11*(J-1)+2. The availability of a double
parking slot is tested. 1If foﬁnd, the value J is assigned
to PH6 and PBl0 is 2. The program branches to 99999 and

returns to GPSS. ’

When no parking is available at curbside or in a double
parking slot,-the program examines the next enplaning
curbside area indicated by the matrix IEPSCH(K,M). When
all vossible areas hgve been tried and no space is available

the program attempts to f£ind a queue space at the envlaning

curb-M-of-the IVALUE(2)—airline.—The-storage number,J, of this

B-1-41

queue is calculated from ﬁPQCS + L-1, where L is equal to M.
The subscript ITEMP3 is evaluated by using 11*(J-1)+ 2 as
before. The sterage representing the.queuing at curbside is
tested for availability. If a slot is found, J is assigned
to PH6 and PB10 is set to 3. The program branches to 99999
and returns to GPSS. When there are no available gueue slots,

the car must recirculate. The parameter PH6 is set to zero
and PBl0 is set to 4. The latter value indicates that the trans-

action must proceed to the recirculation road section of the GPSS
program. The program branches to 99999 and returns to GPSS.

The greeter accompanying a passenger without bags, who has
recirculated, parked and then proceeds from parking to enplaning
curbside, obtains a facility number J at statement 716.

Parameter byte 11 is assigned the value 8. The program
branches to 718 where this transaction will be further processed
with those having passengers with baggage.

Greeters accompanying passengers with béggage are routed

to the deplaning curb logic of this section beginning at
statement 700. The facility number I is obtained by adding

MH1(IV3,12), the bag claim area assigned to ‘the flight and

INDEXF (4) , the index value for bag claim facilities.

If IVALUE(5) equals one, indicating a greeter that has
recirculated and parked, the program branches to 717. For
transactions performing initial processing at the curb, the

storage number J of the deplaning curbside associated with

the-baq—eia&m—area—faciiity—number—T—is—ubtaiﬁéﬁ‘ffﬁﬁ_MH91I,@)

B~1-42

+ DPCBS-1. At this curbside, the oroaram tests for avail-
ability at curbside, or, if necessary, for double wmarking
availability using the zame logical structure as the enplaning
curbside. The procedure here differs slightly since only the
single assigned curbside and associated double parking area

are examinéd and the variables DPCBS and DPDPS are used in
place of EPCBS and EPDPS, respectively. When no space is found
at the deplaning curbside or doublé parking area, the program
branches to statement number 711 to‘test the availability of

a cueue svace without searching other curbside areas. The storage
number J of the deplaning curbside is obtained from MH9 (I,4) +
DPQCS~1, and the GPSS subscript number, ITEMP3, is obtained from
11*(J-1)+2 to test the availability of the storage. If no space
is available, the car must recirculate. Each of the above
conditions cause branching to 99999 and return to GPSS.

At 717, greeters returning to the deplaning curb from
parking are assigned the facility number J of the curbside
associated with bag claim area, I, from the éxpression MH9
(I,4) + INDEXF(l2). A value of twelve is assigned to PBll
to indicate curbside as the current process code. The travel
time from parking to curbside is calculated., The point number
of the deplaning curbside is assigned to PH2 and the facility
number J is assigned to PH7. The program returns via branching

to 99999.

B-1-43

4.10 ENPLANING CURB SECTION

This section is called for each originating enolaning
passenger transaction using private car, taxi, or bus for
aground transportation. The section first sets the following

variables: 1IV2 to IVALUE(2), the airline numbef; IV3 to
IVALUE(3), the transportation mode; and J to MH2(IV2,1),

the enplanine curb facility number.for airline number IV2.
The proaram then branches accordinq<to the mode of transporta-
tion indicated bv IV3.

When the value of IV3 is 1, or 5, which is for private
car or taxi drop-off, the program searches throuagh the array
IEPSCH, for each enplaning curb facility, which contains the

order that the enplaning facilities are to be examined

in order to find an open curb space for the vehicle. The
search scheme always first determines if the enplaning curb

facility specified by the airline has an open curb space
before trying the other enplaning curb facilities. The
variable L is set to IEPSCH(K,J), (K will vary from 1 to 10)
the enplaning curb facility to be tested for'an open space.
The program then determines if L is greater 'than NQENPL, the
number of enplaning curb facilities, indicatinc that
enolaning curb facility number I. is undefined. If it is
undefined the prooram tests the next enplaninc curb facility
as svecified in array IEPSCH for curb facility number J. TIf

enplaning curb facility L is defined then the variable ITEMP1

B-1-44

is set to INDEXF(8) plus L, which gives the MH9 row number for
the enplaning curb facility L. The program then determines if
MHI (ITEMP1,3) is equal to zero, indicatinc that the enplaning
curb facility is a dummy facility. When a dummy facility

is encountered, the program-tests the next enplaning curb
facility. TIf the enplaning curb facility is not a dummy
facility, .the program sets M to EPéBS plus L minus one where
EDCBS, which 1is passed from the GPéS program, is the number
of the first storage used ‘for enplaning curb facilities.

M is thus the number of the storage associated with enplaning
curb facility number L. The reason that one is subtracted from
EPCBS is the same as for the setting of the variable M in the

RENT-A-CAR SECTION, Section 4.5. The variable ITEMP3 is then set

to 11*(M-1)+2, the subscript for the number of available units,

in storage numhber M. The program next determines if the
number of awailable units in storage number M is equal to
zero, indicating no omen space at the ennlaninc curb.: If
there is not a free space at the curb, the program branches
to statement number -804. When a space is avéilable, the
storage numger M is assigned to PH6 and PBl0Q is set to 1,
indicating an assignment to curbside. The program branches
to 803.

At 804, the storage number M, for double parking at curb

L, is determined from EPDPS + L-1. The subscript ITEMP3

is calculated from 11*(M-1)+2. The storage M availability

1s tested for a zero value, indicatinc no open space at the

B-1-45

double parking area of curb L. If no space is available,
the program branehes to statement 800 and continues the

curb search loop. When double parking is available, the
program assigns to PH6 and 2 to PB1O, flagging an assignment
to double parking. The program bran?hes to 803.

If all the enplaning curb facilities have been tested
and no curbside or double parking space is found, the program
attempts to locate a space in the queue adjoining the airline
enplaning curb facilitv. The enplaning curbside facility
number J is assigned to L. Facility number ITEMPl is calculated
from INDEXF(8)+L. The storage number M is calculated from
EPOCS+L-1. The subscript, ITEMP3, as before, is calculated from
11*(M~1)+2. The storage M availability is tested for a zero
value, indicating no space for queuing at the enplaning curbside.
If no space is available, the pProgram branches to 805 to provide
recirculation.

When a queue space is available, M is assigned to PH6
and 3 to PBl0, as a flao for queuing for a parking space.
The proagram branches to 803 to calculate the point number
of the enplaninag curb; ,

At 805, vehicles which must recirculate are assigned

zero to PHS and PH6. A flag value of 4, indicating recircu-

lation, is assigned to PB10. The program branches to 99999. -

Vehicles assigned to curbside, double parking, or gqueuing,

use statement 803 where the point number of the curbside is

B-1-46

determined from MH9(ITEMP1l,3). The point number, NPTTO,
is assioned to PH2 and facility number ITEMP4 is assigned
to PH7. The program branches to 99999 and returns.

If the value of IV3 is 5, which is for bus/limousine
service, the program sets ITEMP2 to MH2(IV2,3), the enplaning
curb facility number for a bus stop for airline number IV2.

If ITEMP2 is greater than zero, indicating that the enplaning
curb facility number for bus/limousine service is different
from the private car enplaninc curb facility number for that
airline, then the proaram branches to statement number 809.
If ITEMP2 is not greater than zero, then the envlaning curb
facility number for bus/limousine service is the same as the
private car enolaning curb facility number and ITEMP2 is set
to MH2(IV2,1), the private car enplaning curb facility

number. At the next statement, which is statement number

809, the program sets ITEMPl to INDEXF(8) + ITEMP2, the

MHO row number for enplaning curb facility nﬁmber ITEMP2. The
variable NPTTO is then set to MH9 (ITEMP1l,3), the point number
fpr the enplaning curb facility. Halfword pgrameter 2 is
assigned the value of NPTTO, the point number, and halfword
parameter 7 is assigned the value of ITEMPl, the MH9 row number
for the enolaning curb facility. The orogram then branches to

statement humber 99999,

B-1-47

4.11 ENTRANCE SECTION

This section is called each time an enplaning passenger
or vistor comes to an entrance. The variable NPTFM is assigned
the value IVALUE(2), the point number of the current location.
The variable NPTTO is set equal to MH3 (NPTFM,4) which is the
point number of the nearest entrance. Statement number 813
is assigned to the variable NEXT. The program then branches
to statement number 950 to determiné the walking time.

After the walking time is calculated, the program branches.
back to statement number 813. Halfword parameter 2 is
assioned the value of NPTTO, the point number of the entrance,

The proaram then branches to statement number 99999.

B-1-48%

4.12 TICKETING AND CHECK-IN SECTION

This section is called for enplaning passengers not
proceeding directly to security, for deplaning passengers
exiting the terminal building without bags, and for greeters.
The program first sets NPTFM to IVALUE(2), the peint number
of the current location, and IV3 to IVALUE(3), the airline
code number. The program tests PB8 for 1, indicating a de-
planing passenger, and branches to 844 for this passenger type.
It also tests for greeters routed to ticketing for meeting
deplaning passengers without bags and branches to 844
for this group. Enplaning passengers are tested for a
non-preticketed status, IVALUE(4) equal to 1, or if the
random number, in IVALUE(5) from RN4 in the GPSS program,
is greater than the percentage of preticketed passengers
using the express check-in facility, MH2(IV3,2). If the
test is true, the program branches to the area for express
check-in facilities which starts at statement number 850.
Otherwise, the program continues to statemenﬁ number 844.

The fuil service facility area starts with J set to
INDEX (14), the index number for full service ticket
facilities. Next K.is set to J+NOTICK to obtain the last
MH9 row number for full service ticket facilities. J is
then inéremented by 1 to obtain the first MH9 row number
for full service ticket facilities. The program then
searches through the full service ticket facilities to find
the one that has the same airline code as the passenger

with the facility number saved in L. If there is a

match of airline codes between the passenger and the

B-1-49

full service ticket facility, the proéram branches to state-
ment number 848. If there is no match, the program enters
an error processing area for undefined full service ticket
facilities.

In the error processing area, the program first
determines if NOTICK, the number of full service ticket
facilities,is greater than zero. If it is not greater than
zero, the program writes the error message, 'O TICKETS &
CHECKIN FACILITIES DEFINED FOR ENPLANING PASSENGERS. RUN
TERMINATED, ' and the program then branches to statement
number 999. 1If it is greater than zero, the program will

use the first full service ticket facility. The variable

L is set to 1 to indicate that facility number. The variable

I is set to INDEXF (14) + 1, the MH9 row number for the first
full service ticket facility. The variable N is set to

MHIY (I,4) the airline code for the first full service tickét
facility. The program then writes the message, 'NO TICKET
& CHECKIN FACILITY DEFINED FOR AIRLINE CODE', IV3, 'FACILITY
OF AIRLINE CODE', N, 'USED'. The error count, NERCNT, is
incremented by one, and the program determings if it is
equal to ERRORS, the maximum allowable error count. If it
is not equal to ERRORS the program goes to the next statement
which is statement 848.

At statement number 848 the program sets M to TICQS + L
- 1, where TICOS, passed from the GPSS program, is the number
of the first queue-storage associated wi£h the full service
ticket facility. This obtains the gueue~storage number for

full service ticked facility number L. —One is subtracted from M

B=1-50

for the same reason that one is subtracted from M in the
RENT-A-CAR SECTION, Section 4.5. The variable ITEMPL is
then set to CHECK3. This variable is passed from the GPSS
program and contains the number of the block location which
the GPSS program will branch to for full service ticket
facilities. N is then set to 14, which is the processing
code for full service ticket facilities. The program then

branches to statement number 857.

The express check-in facility area, which starts at state-
ment number 850, first sets J to INDEXF(2), which is the index
number for express check-in facilities. Next, K is set to J +
NOCHEC, where NOCHEC is the number of express check-in facilities,
to obtain the MH9 row number of the last express check-in facility.
J is then incremented by one to obtain the MH9 row number of
the first express checkin facility. The brogram searches
through the airline codes for the express checkin facilitv in
MH9 (I,4) to determine which facility has the same airline code
as the passenger. The number of the express checkin
facility with the same airline code as the passenger is
saved in variable L. If there is a match, ghe program branches
to statement number 853. If there is no match, the program
enters an error processing area and will attempt to use any
full service facility.

In tﬁe error processing area the program first sets J to
INDEXF (14), the index number for full service ticket facilities.

K is then set to J + NOTICK to obtain the MH9 row number of

the last full service ticket facility. J is then incremented

B=1-51

by 1 to obtain the MH9 row number for the first full service
ticket facility. The program then searches through the airline
codes for the full service ticket facilities, contained in

MHY9 (I,4), to determine which facility has an airline code that
matches with the passenger's airline code in IV3. The number
of the matching facility is saved in the variable L. If there
is a match, the passenger will be_sent to that full service
facility and the program will branqh to statement number 859.
If there is no match, the program first determines if NOTICK,
which is the number of full service ticket facilities, is
greater than zero, indicating that at least one full service
facility has been defined. If NOTICK is not greater than zero
then the message, 'NO TICKETS & CHECKIN DEFINED FOR ENPLANING
PASSENGERS. RUN TERMINATED', is printed and the program branches
to statement number 999. If NOTICK is greater than zero the
program sets I to INDEXF(l4) + 1 to obtain the MH9 row number
of the first full service facility. Next, N is set to MH9

(I,4) to obtain the airline code for the first full service
ticket facility. The message, 'NO EXPRESS CHECKIN FACILITY
DEFINED FOR AIRLINE CODE', IV3, 'FULL SERVICE AIRLINE CODE‘,
N,'USED', is then written. The error count, NERCNT, is incre-
mented by 1 and L is set to 1 for the numbe; of the first full
service ticket facility. If the error count is equal to ERRORS,
the maximum allowable number of errors, the program branches to
999. If the error count is not equal to ERRORS, the program

goes on to the next statement which is statement number 859.

B-1-52

At statement number 859, M is set to TICQS + L -1, where
TICQS is number of the first queue~storage associated with
full service ticket facilities. This obtains the queue-storage
number for facility number L. One is subtracted from TICQS for
the same reason that one was subtracted from M in the RENT-A-CAR
SECTION, Section 4.5. Next, ITEMPl is set to CHEK3. This
variable is passed from the GPSS program and contains the
number of block location which the GPSS program will branch
to for full service ticket facilities. N is then set to 14,
which is the process code for full service ticket facilities.
The program then branches to statement number 857.

The following statement, which is at statement number
853, continues the processing for express check-in facilties
by setting M to CHKQS -1 + I, where CHKQS is the number
of the first quéue-storage associated with express check-in
facilities. This obtains the gqueue-storage number for
express check-in facility Number L. One is subtracted from
CHKQS for the same reason as above. N is neﬁt set to 2 which
is the process code for express check;in. ITEMPl is then set
to CHEK2. This variable is passed from the GPSS progran
and contains the number of the block locations which the GPSS
program will branch to for express checkin facilities.
The program then branches to statement number 857 which is
the following statement.

At statement 857 the program sets NPTTO to MH9(I,3)

to obtain the point number of the full service or express

checkin facility. The statement number 856 is assigned to

B-1-53

NEXT and the program branches to 950 to determine the walking

time.

After the walking time is determined, the program branches
back to statement number 856. The program then assigns to
halfword parameter number 2 the value of NPTTO, the point
number of the full service or express checkin facility. Half-
word parameter 4 is then assigned the value of ITEMPl, the block
location that the GPSS program will-branch to for either full

service or express check-in facilities. Halfword parameter 5 is

assigned the value of M, the queue-storage number for the full
service or express checkin facility. Halfword parameter 7

is assigned the value of I, the MH9 row number for the full
service or express checkin facility. Byte parameter 11 is
assigned the value of N, the process code for full service

Or express checkin facilities. fThe program then branches to

Statement number 99999,

B-1-54

4.13 SECURITY SECTION

This section is called for each znplaning passenger and
greeters proceeding to the gate. The variable NPTFM is set
to IVALUE(2), the point number of the current location; and
IV3 is set to IVALUE(3), the number of the gate the passenger
is proceeding to. I is then set to MH9 (IV3,4), the security

facility number for gate number IV3. I is then tested to
determine if it is greater than zero. If I greater than

zero then the security facility has been defined for that

gate, and the program branches to statement number 860.

If the value of I is not greater than zero then the program
writes the message, 'NO SECURITY FACILITY DEFINED FOR GATE',
IV3, 'SECURITY FACILITY NUMBER 1 IS ASSIGNED'. MH9(IV3,4)
and I are set to 1 in order to assign security facility 1 to
gate number IV3 for current and future reference.

At the following statement, which is statement number
860, J is set to INDEXF (3) +I the MHY9 row number of security
facility number I. M is set to SECQS+I-1, where SECQS is
the number of the first GPSS queue-storage associated with
security facilties, to obtain the gqueue-storage number for
security facility number I. One is subtracted from SECQS
for the same reason that one is subtracted f;om'M in the
RENT-A-CAR SECTION, Section 4.5. NPTTO is next set to MH9
(J,3), the point number of the security facility. Statement
number 861 is assigned to NEXT, and the program then branches

to statement number 950 to determine the walking time.

B-1-55

After the walking time has been calculated the program
branches back to statement number 950. The program then assig£s
to halfword parameter 2 the value of NPTTO, the point number
of the security facility. Halfword parameter 5 is next
assigned the value of M, the queue-storage number for the
security facility. Halfword parameter 7 is assigned the value
of J, the MH9 row number of the séqurity facilify. Halfword
parameter 1l is then assigned the value of 3, the process code
for security. The program then branches to statement number

99999,

B-1-56

4.14 GATE SECTION

This section is called for each enplaning passenger and
greeters proceeding to the gate. The variable NPTFM is set to
IVALUE(2), the point number of the current location; and IV3
is set to IVALUE(3), the number of the gate the passenger is
proceeding to. NPTTO is then set to MH9(IV3,3), the point number
of the gate. No index number is needed to access the gate
information in MH9, since the gates are the first facility
type in MH9 and the index number would be zero. The program
then determines if NPTTO is greater than zero which would
indicate that the gate has been defined and is not a dummy
facility. 1If NPTTO is greater than zero, the program branches
to statement number 873.

If NPTTO is not greater than zero, indicating thét the
gate is a dummy facility, the program scans through the
gate facilities in MH9 to find a gate that is not a dummy
facility, indicated by MH9 (I,3) being greater than zero, where
I is the number of the gate being tested. When a non-dummy gate
facility is found the program sets J to halfword parameter
1, which is the flight table row number for the f£light that
the passenger is going to take. The gate number for the flight
MH1(J,9) is then set to I so that all subsequent passengers
for that flight will go to gate number I. The message, 'GATE',
IV3, 'NOT DEFINED. CHECK DATA FOR FLIGHT', MH1(J, 2, 'GATE',

I, '"USED', is written and IV3 is set to I, the new gate number.
NPTTO is then set to MHY9 (IV3,3), the point number of the new

gate.

B-1-57

The following statement, which is at Statement number
B73, assigns statement number 874 to NEXT. The program then
branches to statement number 950 to determine the walking time.
After the walking time is determined the program branches back
to statement number 874. Next, M is set to GAQSL+IV3-1l where
GAQSL, which is passed from the GPSS program, is the number of
the first queue-storage associatedlwith the gate facilities.
This obtains the number, M, of‘the queue-storage for gate facility
number IV3. One is subtracted from GAQSL for the same reason that
one is subtracted from M in the RENT-A-CAR SECTION, Section 4.5.
Next, halfword parameter 2 is assigned the value of
NPTTO, the point number of the gate. Halfword parameter 5
is assigned the value of M, the queue-storage number for
the gate. Halfword parameter 7 is assigned. the value nf IV3,
the MHS row number for the gate, which in the case of gate
facilities is the same as the number of the gate. Byte parameter 11
is assigned the wvalue of 1, which is the process code for

gates. The program then branches to statement number 99999,

[vs)
I
=
I
un
op

4.15 PARKING SECTION

This section differs from other FORTM sections because
it is called from several locations in the GPSS program.
Furthermore, transactions with four different requirements
call the parking section.

These requirements, and the types of transactions utilizing
them are the following:

(1) Parameter assignments to specify the queue storage
numbers for subsequent simulation of parking lot
exits
- used by deplaning passengers, either self-driven

or with accompanying greeters.
- wused by well-wishers departing the airport.

(2) Parameter assignments to specify the point number
of the parking facility and the parking lot number.
- used by enplaning passengers self driven or

with well wishers.
- used by enplaning passengers réturning rental cars
- used by greeters meeting passengers inside the
terminal.

(3) Parameter assignments to specify point number and
gueue storage number of parking lot exit
- used by greeters proceeding from parking lot

to curb.

(4) Parameter assignment to specify parking lot number

-~ used by well wishers proceeding from enplaning

curb to parking lot.

B-1-59

The program first sets NPTFM to IVALUE(2), the point
number of the current location; IV3 to IVALUE(3), the trans-
portation mode; IV4 to IVALUE(4), the deplaning/enplaning
flag (0.1); IV5 to IVALUE(5), the car rental agency number:;
and, IV6 to IVALUE(6), a flag to signify that only the lot
number will be obtained. The program then determines if the
transaction represents a passenger or well-wisher by testing
IV4 for a value of 1. If the transaction represents either
category the program branches to statement number 720.

If the passenger is deplaning or a greeter is represented the
program determines if the passenger or greeter is driving a
private vehicle or renting a car, and branches to statement
number 728 or 722, respectively. If the transporﬁation mode
is neither of these the program branches to statement number
721 where an error processing area starts. -

At statement number 720 the program determines if the
enplaning passenger or well-wisher is driving a private vehicle
or renting a car and branches to statement number 728 or 722,
respectively. If the transportation mode is neither of these the
program goes to the following statement, statéement 721, where
an error processing area starts. The variab%e I is set to
halfword parameter 4, the address parameter. The program then
writes the message, 'INVALID CALL TO FORTM PARKING. 'PH2=",

NPTFM, 'PH4=' I, 'PB7=', IV4, 'PB6=' IV3. The error count,

B-1-60

NERCNT, is incremented by one and is compared with the maxi-
mum allowable error count, ERRORS. If NERCNT is equal to
ERRORS, the program branches to statement number 999. If
NERCNT is not equal to ERRORS, the program branches to state-
ment number 99999.

The following statement, which is at statement number
722, sets I to INDEXF(ll), the index number for car rental
facilities. J is then set to I+NO§ENT, which is the last
MH9 row number for car rental facilities. I is incremented by
1l to make it the first MH9 row number for car rental facilities.
The program then scans the car rental agencies and compares the
agency code of each car rental facility in MH9(N,4) with the
agency code of the passenger. When a match is found, L is
set to MHY9(N,5), where N is the MH9 row number for car
rental facilities, to obtain the parking lot facility number
for that car rental facility. If L is greater th;n one,
indicating that the parking lot is a special lot for the
rental agency, the program branches to statement number 723.

If L is egual to one, indicating that the general parking
lot is used by the car rental facility, the program continues
scanning the car rental facilities.

If no match of agency codes between ca} rental facilities
and passenger is made with the parking lot facility number
being greater than one, the program .continues to the following
statement, which is statement number 728. At stateﬁent number

728 a lot number, LOTNO, is obtained from PBl4 if one was previously

B-1-61

assigned. For those without this assignment, LOTNO is given
a value of 1 which-.assigns the transaction to the general lot.
The facility number N is then set to INDEXF(10) + LOTNO, the
MHY9 row number for the specified parking lot._ M is set to
PARQS + LOTNO-1, where PARQS, passed from the GPSS program,
is the number of the first queue-storage associated with
parking lot facilities. The program tests IV6 for a value of 1,
to determine if only the lot number is required. For other
values, the program branches to 724. The lot number is
assigned to PBl4, and the program branches to 99999 for a
return to GPSS.

At the following statement, which is at statement number
723, the program sets N to INDEXF(1l0) + L to obtain the MH9
row number for parking lot facility number L. M is then set
to PARQS+L-1 to obtain the queue-storage number for parking
lot facility number L One is subtracted from PARQS for the
same reason that one is subtracted from M in the RENT-A-CAR

SECTION, Section 4.5.

At statement number 724, NPTTO is set to MHY (N,3), the point
number of the parking lot facility. If NPTFM is zero, for an
enplaning passenger or greeter, the program branches to
statement number 727 to skip the walking time determination
since the parking lot was the first landside facility used,
and no - walking time determination is needed. Otherwise
the program assigns statement 727 to NEXT and branches to

statement number 950 to determine the walking time.

B-1-62

After the walking time is calculated, the program branches
back to statement number 727. Halfword parameter 2 is set to NPTTO,
the point number of the parking lot facility. Halfword
parameter 5 is set to M, the queue-storage number of the parking
lot facility. Halfword parameter 7 is set to N, the MH9 row
number of the parking lot facility. Byte parameter 11 is set
to 10, the process code for parkinq lots, and byte parameter

14 is set to LOTN. The program then branches to statement

number 99999,

B-1-63

4.16 TRANSFER PASSENGER SECTION

This section is called once for every transfer and
transit passenger. Transfer passengers are those arriving
and departing at different gates. Transit passengers arrive
and depart at the same gate. The program first sets M to
IVALUE(S), the arriving gate number. ITEMP3 is next set to
MHO (M,4), the securi;y facility number (and concourse number)
for that gate. Next, ITEMP3 is tesped to determine if it is
greater than zero, which indicates that a security facility has
been assigned to the gate. TIf ITEMP1 is greater than zero, the
program branches to statement number 827. TIf ITEMP1 is equal
to zero, the program writes the message, 'NO SECURITY FACILITY
FO& GATE', M, 'SECURITY FACILITY NUMBER 1 ASSIGNED'. MH9
(M,4) and ITEMP3 are both set to 1 to assign security facility
l to gate IVALUE(5).

Statement 827 places IVALUE(2) in IV2. The program
eéxecutes a computed GO TO and branches to program statements
821 or 822 if the passenger is a transfer passenger or transit
passenger, respectively. The following statement, which is
statement number 821, determines if NOFXFR, the number of
available transfer flights, is greater than.zero. If NOFXFR
is greater than zero, indicating there are transfer flights
available, the program branches to statement number 824, TIf
NOFXFR is equal to zero the Program sets K to PBS5, the
number in fhe party. MHI1(ITEMP3) is then incremented by K
to keep count of passengers that leave concourse number

ITEMPl. The save-value XFRXH is incremented by 1 to keep

B-1-64

count of the number of transfer transactions that are not
accepted on a transfer flight. The block location TRX99 is
assigned to PH4, and the block location CTRL1 is assigned to
PH8. When the FORTRAN program returns to the GPSS program,
these two assignments will cause the transfer transaction to
terminate. The program then branches to statement number
99999,

The fbllowing statement, statement number 824, assigns
block location CITRLO to PH8, which will cause the GPSS
program to process the transaction normally once the FORTM
program returns. The variable N is set to the remainder of
IVALUE(3), which is a random number passed from the GPSS
program, divided by NOFXFR, the number of available transfer
flights, plus 1. This will cause N to be assigned a random
integer between 1 and NOFXFR, which will be used as the row
number of the transfer flight matrix MHS5 for this transfer
passenger. The variable I is then set to MH5(N) to obtain
the MH1 row number of the transfer flight. The variable K
is next set to the address for MH1(I,1ll). The quantity
stored at this address is the number of seats still available
for transfer passengers. MH1(I,ll) is then'decremented by
1l to indicate that another seat has been occupied by a
transfer passenger.

The following statement determines if MH1(I,1ll) is
greater thén zero or not. If it is greater than zero,
indicating that there are transfer passenger seats avail-

able on the flight, the program branches to statement number

B-1-65

820. If MH1(I,ll) is equal to zero, indicating that all
transfer seats are taken, the program deletes the flight
number in row N from the transfer flight table MHS5 by
moving all flights in MH5, after flight number N, one
row closer to the beginning of the matrix. The number
of transfer flights, NOFXFR, is decremented by 1.

At the following statement, which is at statement number
820, the program assigns the MH1 flight table row number,
I, to PH7, branches to 99999 and returns to GPSS. The
transit passenger's arriving flight table row number is con-
tained in IVALUE(3). At statement 822 this is assigned to K.
The gate number, IGAT, of this flight is determined
from MHL(K,9). The flight table matrix MH1 is examined
starting from row K+l to determine the next departure at
the same gate. MH1(I,l) is tested in a DO LOOP from
I=K+1 to I=999 for negative, zero, and positive values.
If negative, indicating the end of the flight table matrix,
the program branches to statement 818. If zero, indicating
an arriving flight, the program branches to 826 to search
the next row, If positive, indicating a departing flight,
the program branches to 819. At 819 the gaFe number in
MH1(I,9) is compared to IGAT. If these are identical
the program branches to 817. If not identical the program
continues to statement 826 to continue the search.

At sfatement 818, which follows statement 826, the
number of transit passengers in the party, contained in

byte parameter 5, is assigned to K. Matrix MH1]l is

B-1-66

incremented by K. Although this passenger was intended to
act as a transit passenger, no matching gate number was
found and this passenger is included in the count XFRXH of
transfer passengers unable to obtain a connecting flight.
The value XFRXH is incremented by K. The passenger trans-
action is assigned TRX99 to PH4 and CTRL1 to PH8 for
termination upon return to the GPSS program.

Transit passengers successfully cbtaining a matching
gate number are routed to statement 817. Flicht table
row number, I, is assigned to PH1l and PH8 is assigned CTRL1
for transfer to the next point in the transit passenger
.routing function.

The program branches to 99999 for a return to GPSS.

B~1-67

4.17 TRANSFER FLIGHTS SECTION

This section is called at the start of the simulation to
initialize the flight table and later called to add to or
delete a flight from the flight table. If transfer seats remain
unfilled when the flight is to be deleted, this section is
called to assign point numbers to transactions created to com-
plete the count of transfer passengers. Only the transaction
representing the flight performs this call.

The variable ivz is first set to IVALUE(2), the MHl1 row
number. 1IV3 is next set to IVALUE(3), the flag indicating
flight table initialization, addition, deletion, or point
number assignment. The program next: tests if IV3 is equal
to 1, the flag setting for deleting a flight from the
flight transfer table. If IV3 is equal to 1, the program
branches to statement number 832. TIf TV3 is not equal to 1,
the program tests if IV3 is equal to 2, the flag setting
for adding a flight to the flight transfer table. If
IV3 is equal to 2, the program branches to statement number
830. If IV3 is equal to 3, the program branches to 836
for point number assignment. If IV3 is noné of the above,
the flight transfer table is bo be initialized.

The program then tests each flight, I, in MH1, which is the
flight table matrix, in several different ways. The - first

~ test determines whether MH1(I,l) is negative, zero, or
positive. This flag tells whether the end of table has been
reached, if negativé; whether the flight is an arrival flight,

if zero; or if flight is a departure flight, if positive.

B-1-68

If the MH1 (I, 1) flag is negative, the program branches
to statement number 835; assigns I to PHl1l, the number of the
flight in MH1 last tested; and then branches to statement
number 99999. If the MH1(I,1) flag is zero, then the
flight is an arrival flight, and the program goes to
the next flight listed in MH1. If the MH1 (I,1l) flag is
positive then the flight is a departure flight, and the
program proceeds to statement number 833 which is the
following statement. The program then sets ITEMPl to
MH1(I,6)*60, the time of flight in seconds from the simu-
lation start. The program then tests if ITEMPl is greater
than save-value XFAXH, which is the maximum time interval
between current time and flight time allowed for addition
to the transfer flight table. This has a default value
of 120 minutes. If ITEMPl is greater than XFAXH, then the
departing flight will leave after the maximum time interval
and all departure flights after this departure will also
leave after the time interval since the fliéhts in MH1 are
listed in chronological order. If ITEMPl is greater than
XFAXH, the program branches to statement nuﬁber 835; assigns
I to PH1, the number of the last flight tested in the
flight table; and then branches to statement number 99999.
If ITEMPl is not greatér than XFAXH, the program goes to the
following statement.

The following statement tests whether ITEMPl is less
than savevalue XFDXﬁ, which is the minimum time interval.

between current time and flight time allowed for addition

B-1-69

to the transit flight table. This has a default value of 30
minutes. If ITEMPl is less than XFDXH, then the departure
flight is scheduled to leave at too early a time to be
added to the transfer flight table, so the program goes to
test the next flight in the MH1 flight table. If ITEMP1

is not less than XFDXH the program goes to the following
statement which tests whether MHl(I,ll) is equal to zero

or not. MH1(I,ll) contains the number of transfer seats to
be filled on the departure flight. If MH1(I,ll) is zero,
~then there are no transfer seats to be filled, and the
program goes to test the next flight in the MH1 flight
table. TIf MH1(I,1l) is greater than zero, the program goes
to the following statement.

The following statement increments NOFXFR, which is
the count of transfer flights in the transfer flight table,
by 1. Wext, the departure flight, I, is added to the
transfer flight table by setting MH5 (NOFXFR) to I. If all
flights'have been tested in the MH1 flight table, and flight
time relative to simulation start does not exceed XFAXH,
the program-sets PHl to I, the last row number in MH1 at
statement 855; and then branches to the staFement number
99999,

At statement number 832, the start of the DELETE FROM
FLIGHT TABLE SECTION, the program first tests if MHS (1),
the MH1 réw number of the first flight in the transfer
flight table, is not equal to IV2, the MHl row number of

the flight that is to be deleted. If the fligyht to be

deleted is not the first flight listed in the transfer

B-1-70

flight table, then the program branches to statement number
99999. If they are the same flight, then the count of
flights in the transfer flight table, NOFXFR, is decremented
by one. The program then shifts each remaining flight in the
transfer flight table one position #oward the begining of MHS,
thus deleting the first flight from the table. The program
then branches to statement number 99999.

At statement number 830 which is the start of the
add to transfer flight table section, the program first tests
Cif NOFXFR, the count of flights in the table, is equal to 100.
If it is, the program branches to statement number 831, writes
the message; 'ADDITION OF DEPARTING FLIGHT, MH1 ROW NO', IV2
'TO TRANSFER FLIGHT TABLE MH5 WOULD HAVE CREATED OVERFLOW
CONDITION. FLIGHT NOT ADDED', and then branches to statement
number £9999., If NOFXFR is less than 100, then NOFXFR is
incremented by 1 and MH5(NOFXFR) is set to IV2 which'adds
the flight to the transfer flight table. The program then
branches to statement number 99999.

When transfer flights are deleted from the transfer
flight table, GPSS fills unassigned transfer seats. The
logic beginning with statement 836 obtains'the point number
of the airline ticket counter to initiate the processing of
these transactions. At statement 836, the airline number of
the flight is obtained from MH1(IV2,3) and assigned to IARLIN.
The index'number, IROW, for ticket facilities is obtained from
MH8 (14,2). The number of these facilities, INUMTC, is assigned

from MHB8(14,1). ITEMPl is the row number of the first facility

B-1-71

in MH9 of this type and is set equal to IROWNO+l. ITEMP2 is the
row number of the last ticketing facility in MH9 ahd is IROWNO+
INUMTC. Matrix MH9(I,4) is searched between the I subscript
levels ITEMPl and ITEMP2 for the airline number identical to
IARLIN. When this is found the program branches to statement 838.
If no airline is found, the program sets I to ITEMPI,
MHY (I,4) to ITEMP2, and then writes error messages and continues
to statement 538.
At statement 838 the point number IPTNO is obtained
from MH9(I,3). This is assigned to PH2. The Program branches

to 99999 and returns to GPSS.

B-1-72

4.18 MISCELLANEOUS GPSS ERROR CONDITIONS SECTION

This section is called from GPSS to record a variety
of error conditions. The calling transactions are found on
user chain ERROR at the end of the simulation run. The
variable IV2 is set to IVALUE(2), the type of error. The
program then branches to the section of the program for the
tfpe of error specified in IV2.

At statement number 901, the message, 'VFFICLE XaC',
IVALUE (3), 'UNABLE TO MATCH WITH PAX AT DEPLANING CURB. CHECK
USER CHAIN "FRROR" FOR THIS XAC', is written and then the
program branches to statement 99999.

At statement number 902, the message, 'PAX XAC WITH
GROUND TRANSPORT MODE', IVALUE(3), 'ENTERED BLOCK DPLCO.
CHECK USER CHAIN "ERROR" FOR XAC NO', IV5, is printed, and
then the program branches to statement number 99999.

At statement number 903 through 910 the statement is
a CONTINUE. This is done so that more error messages can
be easily added at a later time. The program then branches

to statement numbef 99999,

B-1-73

4.19 FCRMATTED REPORT SECTION

This section is called once when the time of end of
simulation event has occurred. The wariable Cl is set to
IVALUE(2) , which is the relative clock time. The rest of this
section is repeated for each type of facility I, where I
assumes the values 1 through 20. .

The flag, NSWTCH, for undefined numbers of agents, is
reset to zero. K is set to-MH8(1,15, the count of facilities
of type I. If K is zero, which indicates that there are no faci-
lities of this type, the program branches to statement number
450, and the next facility type will be processed. J is next
set to MH8(I,2), the index number of facility type I. K is set to
RK+J which is the row number of the last facility of type I in MHO.
J is incremented by one to set it to the row number of the first
facility of type I in MHY9. If the facility type is gate,
custom, security, check-in, ticketing, car rental, or immigra-
tion the program branches to statement number 400 and prints
the title of the simulation, if there is a simulation title.

If the facility type is not one of the above facility types,
the simulation branches to statement number 450 where I is
incremented by 1 and then the next facility.type is processed.
The program then branches according to facility type to a
write statement which will print out the title for that
facility feport. After each write statement, the program
branches to statement number 430 where thg column headings for

the facility report are printed out. The count of the number

B-1-74

of lines printed on the page, NCOUNT, is set to 11+NTLINS

where NTLINS is the number of lines in the simulation title,
and the number 11 takes into account the number of lines for
the individual facility report title and the column headings.

The variable ITEMPl, is next set to FPACQSX(I), which is
the base value of the queue and storages for that facility
type. The basic equation for calculating the subscript for
queue or storage attributes is J=K*(N-1)+L where J is the
subscript, N is the number of the facility in that type, and
K and L are indexing constants. IQUER is set to 4* (ITEMP-1)
which is part of the subscript for the queue attribute cumu-
lative time integral. The indexing constant I will be added
at a later time. IQUEI is set to IQUER+IQUER which is part
of the subscript for some of the queue attributes. The indexing
constant L, which will indicate which attribute is wanted, will
be added at a later time. ISTOX is then set to 11* (ITEMP1)-1
which is part of the subscript for one of the storage attributes.
ITEMP1 is then set to ITEMP1-FACQSX(I)+l which sets the value
of ITEMPl to 1.

The segment of the proéram through stétement number 455
is then repeated for each facility in type I, where N is
incrementally set to MH9, row number J through K. The program
first tests if the facility is a dummy facility by determining
if MH9(N,3) is zero. If it is zero, the program branches
to statement number 448. If MHO9(N,3) is not zero, NCOUNT

is then incremented‘by'z, to add to the count of lines printed

B-1-75

the number of lines needed to print the current line. If
NCOUNT is less than or equal to 55, then a full page has not
been printed yet, and the program branches to statement number
445. If NCOUNT is greater than 55, then a full page has been
printed, and the program prints the message, "ALL TIMES IN
MINUTES: SECONDS." The title of the simulation, if there is

a title, is printeé at the top of the next rage. The program
then branches to a write statement which prints out the title
of the facility report at the top of the next page. After
each write statement the program branches to statement number
443 where NCOUNT is set to 11+NTLINS to account for the number
of lines used in the title and column headings. The column
headings for the report are then printed. At the next state-
ment, statement number 445, ITEMP2 is set to the current
contents of storage plus number of available units in

storage which gives the total number of agents in the

storage facility. If ITEMP2 is greater than 1000, (1000 being
an arbitrarily large number) then the number'of agents in the
storage is undefined, and the flag NSWTCH is set to 1. ITEMP3
is next set to the storage entry count times the scale to obtain
the total number of patrons using the facility. If ITEMP3 is
greater than zero indicating that the storage has been used,
then the program branches to statement number 444. If ITEMP3
is not greater than zero, then the variables ITEMP4,XTEMPS,
ITMP6M, ITMP6S are set to zero and the pProgram branches to
statement number 446. This is done in order to avoid division

by zero and to avoid needless calculations. At statement

B-1-76

number 444, ITEMP4 is set to the maximum storage contents to
Oobtain the maximum number of agents busy. ITEMPS is set to
the cumulative time integral divided by Cl, the relative clock
time, to obtain the average number of agents busy. ITEMP6

is set to the cumulative time integral divided by the entry
count times the scale to obtain the average time per patron

in seconds. ITEMP6M is set to ITEMP6/60 to obtain the seconds
part of the average time Per patron. At the following state-
ment, which is at statement number 446,ITEMP7 is set equal to
the total entry count times the scale.

If ITEMP7 is greater than zero, indicating that there
were entries to the queue, then the program branches to state-
ment number 447. If ITEMP7 is equal to zero, indicating that
there have been no entires to the queue, then the variables
ITEMP8,XTEMP9, ITM1OM, ITM10S are set to zero, and the program
branches to statement number 449. This is done to avoid
dividing by zero and to avoid needless calculations.

At the following statement, which is ét statement number
447, ITEMP8 is set to the maximum contents of the queue times
the scale; XTEMPY9 is set to the cumulative éiﬁe integral for
the queue times the scale divided by the reglative clock time
to obtain the average queue size. ITEMP1l0 is set to the cumula-
tive time integral for the gqueue times the scale divided by
the total entry count to obtain the average time in the queue
in seconds. ITM1OM is set to ITEMPl0 divided by 60 to obtain

the average time in the queue in integer minutes. ITM10S

B-1-77

is set to the remaiﬁder of ITEMP10 divided by 60 to obtain
the seconds part of the average time in the queue. The data
for the facility report is next written out.

At the following statement, which is at statement number
448, ITEMPl is incremented by 1 to obtain the number of the
next facility type I. IQUER is incremented by 4, IQUEI is
incremented by 8, and ISTOX is incremented by 1l to obtain
the subscripts for the next facility in type I. The following
statement, which is at statement number 455, is a continue
statement and is the last statement of the DO LOOP which prints
the facility report for all facilities of type I.

The program then writes the message, 'ALL TIMES IN
MINUTES: SECONDS'. If the undefined agent switch, NSWTCH,
is set to 1, then the following message is written: '**INDICATES
UNDEFINED (UNLIMITED) NO. OF AGENTS'. The following statement,
which is at statement number 450, is a continue statement
and is the last statement of the DO LOOP which processes all
facility types 1 through 20. The program tﬁen branches to

statement number 99999,

B-1-78

4.20 CLOCK UPDATE SECTION

This section is called once every minute of simulation
time. ITEMPl is set to the halfword save-value CLKXH plus
IVALUE (2) /60 to obtain the new clock time. IVALUE(2) is the
time increment in seconds which has been set to 60 in the GPSS
program, and CLKXH is the clock time which is to be incremented.
Since the clock time is kept in the form of hours and minutes,
the program next determines if an hour has passed, by dividing
ITEMPl by 100 and checking the remainder to seé if it is greater
than or equal to 60. If the remainder is greater than or equal
to 60, then an hour has passed and an hour is added in the clock
column to the clock time by adding 40 to ITEMPl. The halfword
savevalue CLKXH is then set to the new clock time, ITEMPl. The

program then branches to statement number 99999.

4.21 SNAPSHOTS

This section produces two output time series. The first
is the occupancy or congestion counts at simulated terminal
points for each five-minute time interval. The output data,
written on File 12, consists of the simulated time and number
of persons currently located at this point. The second time
series are flow and queue length data for selected simulated
landside processors produced as a function of time. This data
is written on Files 13 and 14.

The pfogram stores the current clock time in ITEMPl, then

-tests LINSNP, the line counter for occupancy data for a value

less than 50. When this condition occurs the program branches

B-1-79

to statement 653. When LINSNP is 50 or greater the program
proceeds to the next instruction. LINSNP is made equal to
NTLINS, the number runtitle records input for use as thé simu-
lation title. The title and the heading "5 MINUTE SNAPSHOTS
OF CONGESTION AT POINTS" are written on File 12, with column
headings for time and point numbers. Because the initial
value of LINSNP is 50, this information is produced on the
initial call to this section.

At 653, the halfword savevalues 1 to 24 of the GPSS MAIN
brogram, representing simulated congestion at the correspond-
ing point numbers, are stored in the ITEMPA array by a DO loop
ending at statement 654. The ITEMPl and ITEMPA values are
written to File number 12, then LINSNP is incremented by one.

The remainder of the snapshot section produces the flow,
queue length, and halfword savevalues for tﬁe corresponding
GPSS entities with numbers specified by the GPSTO, GPQUE
and GPHALF arrays discussed in the input section. A title is
written for this information on File 13 using logic similar
to that for congestion. The counter LINSNX is used as a line
counter in place of LINSNP and is also initialized to 50. At
statement 960 LINSNX is incremented by one. '’

A DO loop ending at 660 extracts the required entry
counts, current contents, queue contents and savevalues to
produce the. time series. The GPSS storage number, ISTRNO,
identifying the simulated landside processor for which flow
data is to be extractéd, is obtained from the input GPSTO(IR).

When a storage number is not prcsent in GPSTO(IR), the value is

B-1-80

Zero for the element and the program branches to statement
965. When a storage number is provided, the subscripts JENTCT

and JRCON are calculated by the following algorithm:

K (N=1)+L,

q
[}

where: J = Subscript value for GPSS addressing
JENTCT, JRCON
K,L = Indexing contants
N = Index number of specific entity type
ISTRNO

This formula is obtained from the IBM General Purpose
Simulation System V User's manual (SH20-0851-1) pp. 164-167.
The constants are provided by Table 12-1 of the referenced
document. The cumulative entry count, XENTCT, and current
contents, XRCON, are then obtained from ISTO (JENTCT) and
ISTO (JRCON), respectively.

The variable flow, the number of passengers or vehicles
processed by the storage in a specified time interval is the
difference between the cumulative entry count, XENTCT, at the
current clock time and the cumulative entry count, ENTRCT(IR),
for the previous interval minus the change in current contents,
XRCON-CRCON(IR), over the same time duration. The entire
quantity is multiplied by the simulation scale factor SCALE.

After flow is calulated, the current cumulative entry
count and contents are stored in ENTRCT(IR) and CRCON (IR),
respectively, for.use'in the succeeding time interval calcula-

tion. The initial values in these arrays are zeroes.

B-1-81

The output array element, TSSOUT(l), is assigned the
value ITEMPl and TSSOUT (IR+1) is made equal to FLOW.

This queue length present at a landside processor is
obtained next from the GPSS MAIN program. The number of the
designated queue, ITQUE, is obtained from the input GPQUE (IR)
at statement 965 and tested for zero in the next statement.
When the element is zero, the progrém branches to 967. The
subscript JQUE is calculated from thé same algorithm as JENTCT
and JRCON. Current contents of the queue are obtained from
IQUE (JQUE). These are multiplied by the scale factor and stored
in TSQUE(IR+1l). The current time is stored in TSQUE (1) .

At statement 976, the GPSS halfword savevalue designated by
GPHALF(IR) is stored in ITHLF. Again, as in the flow and queue
léngth subsections, the value of ITHLF is tested for zero and
the program branches to 660 for this condition. Because the
only information that GPSS stores for the Halfword savevalue
is the current value of the savevalue, no calculation is
required for the subscript. The value is directly obtainable
as ISAVEH(ITHLF) and assigned to ISHLF.

Halfword savevalues are generally used to record cumula-
tive processor outflows in the GPSS program Qhen storage entry
counts and current contents are inapplicable. The value FLOW
is calculated by subtracting, ISHLF, the current magnitude of
the savevalue from JTHLF(IR), the value from the last time
interval. This difference is multiplied by SCALE. The current

value of FLOW is stored in TSHALF(IR+1) and the clock time,

B-1-82

ITEMPl, is stored in TSHALF(l). The current value of ISHLF is
stored in JTHLF (IR) for use in the next time interval. The
initial value of JTHLF(IR) is zero.

The IR loop ends at 660 with a CONTINUE statement.

A DO loop ending at 969 calculates outflow from security
stations and stores them in TSFLOW(IL+l). The security out-
flow is recorded in the GPSS MAIN pfogram in halfword matrix
12. The cumulative flow value, JSECfL, is obtained from HMH12
and the flow during the current time interval is calculated
with the same procedure used for savevalues. At 969 the cur-
rent security flow is stored in ISECFL(IL). Initial values of
ISECFL are also zero.

The outflow of simulated full service airline counters
are recorded in MHI13 and stored in TTFLOW by a DO loop ending
in 923. Processing is identical to security flow calculation
and storage.

The values stored in TSSOUT, TSQUE, TSHALF, TSFLOW and
TTFLOW are written on File i3 for print out. These are also
written as a single record on File 14 under a 100I5 format for
later processing and averaging with other ALSIM runs. The
section ends with a GO to 99999 instruction éo return to the

GPSS MAIN program.

B8-1-83

4.22 CHANGE CARD PROCESSING
This section provides a method for changing numbers
of servers at landside facilities as a function of time.
Data cards specifying time, facility name and numbers of
servers must be input. This section is called from GPSS
whenever a change is required. |
The argument IVALUE(2) is tested for a value of 2,
the flag signifying a decrease in the number of servers in a
storage. A value of 2 causes branching to 590 to accomplish
this. The other value, 1, is used to read and process a
change card.
The variable ICHNGl is tested for the initial value
of zero. If true, the program branches to statement 580.
to read the initial change card and return to GPSS. Other-
wise the variable SERVERS(1l), which containé the characters
representing any facility, is tested for zero. If a zero
is found, indicating no data present on the input card, the
program branches to statement 560 for reading the next
change card. For non-zero values of SERVRS (1), a search
through the facility type array, FACTYP, is performed at
statement 551. Variables I and M are initialized to 1
and 0, respectively. SERVRS(I) is compared with FACTYP (L)
in a DO LOOP, with L ranging from 1 to 20. When the
characters match, the program branches to 553. If no
match is found, the program branches to 557 +o write an

érror message and terminate the program.

B-1-84

At statement 553 the GPSS storage number FACQSX(L)
is assigned to J. The value of J is tested for zero. When
J equals zero, the facility is not defined in the simulation
and the program branches to 557. For non-zero values of J,

a value of one is subtracted from J and I is incremented by l:
The next item on the data card, SERVRS(l), represents the
facility ﬁumber within type and is .assigned to IFACNO. If
IFACNO is zero, indicating the end of the data stream, the
brogram branches to 558, At 558 the array SERVRS(I) is
zeroed. The number of changes, M,is placed in the savevalue
NSCXH, and the program continues to statement 560.

When IFACNO is less than zero, a new facility name is
present in SERVRS(I) and the program branches back to state-
-ment 551 to process the next facility type. If IFACNO is
greater than the number of facilities within type, NFASCM
(L,1), an error is recognized and the program branches to 557.

When IFACNO is an admissible value, the subscribt, K1,
used to obtain current contents of the storaée from ISTO (K1)
is calculated using 11*(J+IFACNO-1l) +1. The subscript K2
is K1+l and provides the remaining storage capacity from
ISTO(K2). Variables ICONT and IRCAP are set, to current
contents and remaining capacity, respectively.

The next value in SERVRS(I) is obtained by incrementing
I by 1. This provides the new number of servers at the facility
and is set to NEWCAP. If the value of NEWCAP is less than
zero the program branches to 557. When NEWCAP is greéter

than or equal to the current contents, ICONT, the program

B-1-85

branches to 555. At 555 the remaining capacity, ISTO(K2),

is changed to the value NEWEAP mints ICONT. The index

M of MH7 is increased by 1 to point to the row number used
for the MH storage on a change data card. The GPSS storage
number given by J+IFACNO is stored at MH7(M,1l). The count
ISTO(K1+5) is decreased by 1 to compensate for the condition
occuring when the new capacity is greater than or equal to
the current contents and the storage is full. The GPSS
Program inserts a transaction into the storage under these
conditions to allow transactions waiting on the delay chain
to start moving. The program branches back to statement 554.
When NEWCAP is less than the current contents, the remaining
capacity ISTO(K2) is zeroed. The index M is increased by

1 and the matrix element MH7(M,1l) is made equal to the GPSS
storage number given by J+IFACNO. The element MH7 (M+30,1)

is made equal to the new capacity NEWCAP. The program branches
back to 554 to process the remaining storages oﬁ the cihange
data card.

The error condition occurring when an input facility
number to be changed cannot be recognized by'the-model, causes
branching to 557. At this location, an error statement
specifying time of oceurrence and other parameters is printed
out. The logic switch JOBLS is set and the program returns

to GPSS for immediate termination.

B-1-86

After processing a change card the program continues to
statement 560 and then reads the next change card. The FORTRAN
input data card is read into the ICARD array and the number
of cards, NCARD, and line count, LINECT, are both incremented
by 1.

LINECT is tested for a value of 51 to determine if a
page is to be printed in fuil. If LINECT is less than 51 the
data card is printed immediately. If LINECT equals or exceeds
51, a new page is-started and the data card printed out. The
program proceeds to statement 580, the location that the
program branches to when this section is utilizéd initially.
The first change card is assumed to follow all other landside
simulation program data cards and is read in the DATA INPUT
SECTION of the FORTRAN program. At statement 580, card
identifiers are tested to determine identity with the
variable ICHAN which contains the character sti‘ing 'CHAN'.

An incorrect card type causes branching to 585.

The flag ICHNGIL, initially having a value of zero in
order to cause branching to 580 for the first entry, is
now set to one. Subroutine XCODE is called and an in-core write
into the array, BUFFER, is performed on the‘card image.

The first word of array, BUFFER, is set egual to NAMECH
which is the character string '&CH' for an ensuing namelist
read. The second word is modified to blank the fifth and
sixth charécters on the data card and preserve the seventh
and eighth characters by a logical AND, plus the addition of

the hexadecimal number in variable BLANK2. XCODE is again

B-1-87

called and a read statement is executed with the namelist of
CH.
The variable IC is set to the simulation clock time CLKH.
The time interval in seconds from current simulation time, IC,
until the next change occurring at the time indicated by
the variable, TIME, is calculated and placed in fullword
savevalue CHGXF. The program returhs to GPSS.
Data cards not recognized as ¢hange cards or an end
of input file cause branching to 585. The program makes CHGXF
equal to lO6 indicating no further changes and returns to GPSS.
When the storage capacity must be lowered, that is -
the number of servers decreased, the initial statement of
this FORTRAN program section caused branching to statement
590. At this location the subscript J for current contents
of the storage number contained in IVALUE(3) , obtained by
GPSS from MH7 (M, 1), is calculated. The new capacity, INVALUE(4),
obtained in GPSS from MH7(M+30)1), is placed in NEWCAP. The
difference, NURCAP , between new capacity, NEWCAP, and current
contents, ISTO(J), is calculated and tested for a value
greater than or equal to zero. If true, the'new capacity
equals or exceeds the current contents and the nrogram
branches to 592. At 592 the remaining capacity ISTO(J+l)
is made equal to NURCAP. The flag, SCLXH, is given a value
of one to indicate that the storage capacity lowering process
is complete. The program returns to GPSS.
When current céntents exceed the new capacity, NURCAP

is less than zero. The program makes the remaining capacity

B-1-88

ISTO{J3+1l) equal to zero and returns to GPSS to wait until
a transaction leaves the storage and this sectimn is again

accessed,

B-1-89

4.23 CONCESSION SECTION

This section is called by transfer passengers who are
waiting in the terminal before catching their connecting flight.
The value of NOCONC is first tested for a value of zero. If
NOCONC is zero then there are no concessidns defined by the
input data, and the program branches to 752. If NOCONC is not
equal to zero then the variable NPTFM is set to IVALUE(2), the
current location. The variable IFLT is set to IVALUE(3), the
flight table row number. The variable IGAT is set to MH1
(IFLT,9), the gate number for flight IFLT. The variable I
is set to zero, which indicates that the concession is in
the lobby. If IVALUE(6) is equal to 2, the flag that the
concession to be found is in the concourse, then I is set to
MH9 (IGAT,4), the number of the security for gate IGAT.

The variable L is set to INDEXF (15) +1, the subscript for the
first concession facility in the MHY facility matrix. The
variable M is set to INDEXF(15) +NOCONC, the subsc¢ript for the
last concession facility in the MH9 facility matrix. The
variable IC, which will be used as a count of the concessions
found with the correct location, is set to zero. The con-
Cession facilities in the MHS® facility are then searched
through for an associated security whose number is the

Same as I. For each such security found IC is incremented by
one. If the concession wanted is a lobby concessicn then I is zero
and each concession with an MH9 (J,4) value of zero is also

a lobby concession and IC is incremented by one for each such case.

B-1-90

Next, IC is tested for a value greater than zero. If it is
greater than zero, indicating concessions were found in the right
location, then the program branches to 753. If it is not greater
than zero, then at statement number 752 a zero is assigned to
halfword parameter 5, and savevalue TRVXH is set to zero which
give a zero waiting time and zero travel time to concession,
respectively. The program then branches to 99999.

At statement 753, the variable IRN is set to the remainder
of IVALUE(4) , which is a random number between 1 and 999,
divided by IC plus one. The result is the number of the
concession chosen in a random manner. IC is set to zero
and the MH9 facility matrix is searched again for concessions
which have an associated security which is equal to I, or
which are lobby concessions if I is zero. For each such
concession found, IC is incremented by one. When IC is
equal to IRN, the chosen concession number, the program
branches to statement number 755.

At statement number 755, the wvariable ﬁPTTO is set to
MH9 (J,3) ,the point number of the chosen concession. The
statement number 756 is assigned to NEXT, and the program
branches to statement number 550 to determiﬁe the walking
time.

After the walking time is determined, at statement 756,
the variable ICl is set to IVALUE(5), the current clock time.
The variable ITIM is set to MHL(IFLT,6)*50-ICl, the time

remaining in seconds before the flight departs. If IVALUE(6)

B-1-91

to ITIM-LEAVEL-LEAVEL*IVALUE(4) /1000, where LEAVEL is the latest
time before flight time to leave the concession. LEAVEV is the
spread of the uniform distribution before the latest time that
the passenger will leave the concession. LEAVEV is multiplied
by the random numbers IVALUE(4)/1000 which gives a random value
between 0 and 1. The value in ITIM, as a result of this state-
ment, is thus the amount of time the passenger will spend at
the concession. If IVALUE(6) equals 2, indicating a concourse
concession; then ITIM is set to ITIM-LEAVEC-LEAVEV*IVALUE (4) /1000,
where LEAVEC is the latest time before flight time that the
passenger will leave the concourse concession. If ITIM is less
than zero, indicating there is not much time before the flight,
then ITIM is set to zero.

Halfword parameter 2 is set to NPTTO, the point number
of the concession. Halfword parameter 5 is.set to ITIM.
Halfword parameter 7 is set to J, the MH9 subscript of the
concession. Byte parameter 1l is set to 15,‘the process code

for concession. The program then branches to statement 959¢¢9,

B-1~92

4.24 CONCOURSE SECTION

This section is called each time a deplaning passenger
leaves a concourse. NPTFM is set to IVALUE(2), the number
of the point at which the passenger is coming from. IV3 is
set to IVALUE(3), which is the gate number the passenger
came from. ISEC is set to MH9(IV3,4), the security facility
number (concourse) for gate number IV3. There are no actual
concourse facilities in this simulation. The entrance and
exit to a concourse are considered to be at the same rlace as
the security facility, so that the number of the concourse
and the point number for the concourse are taken to be the same
as the facility number and the point number of the security
at the concourse entrance, respectively. J is next set to
INDEXF (3) , the index number for security facilities, Plus
ISEC, to obtain the MH9 row number for security (concourse)
number ISEC. NPTTO is then set to MH9(J,3), the point number
for security (concourse) number ISEC. Statemént number 920 is
assigned to the variable NEXT and the progrém then branches to
Statement number 950 to determine the walking time.

After the-walking time has been determined, the program
branches back to statement number 920. NPTTO, the pecint
number of the security (concourse), is assigned to halfword
parameter 2. ISEC, the facility number of the security
(concourse), is assigned to halfword parameter 5. The program

then branches to statement number 99999.

B-1-93

4.25 WALKING TIME CALCULATION SECTION

This section is called from other parts of the FORTM
program every time there is a need for a walking time deter-
mination. The flag NPTOSW is tested for a value of one. If
it is equal to one, then a non-positive value of a point has
been previously discovered. If NPTOSW is equal to one, then
the program branches to 951 in order to skip the error message
so that the error message will not fepeat itself. 1If NPTOSW
is not equal to one, then NPTFM and NPTTO, the point numbers
that the transaction is going between, are tested for a
greater than zero value. If both MPTFM and NPTTO are greater
than zero then the program branches to 951. If either
or both NPTFM and NPTTO are less than or equai to zero,
then the point number or numbers are undefined, and the flag
NPTOSW is set to one and an error message is written. At 951,
halfword savevalue TRVXH is set to MHB (NPTFM,NPTTO) to obtain
the walking time in seconds between the points. NPFTM is the
number of the point the passenger is coming f¥om, and NPTTO
is the number of the point the passenger is going to. MH6
contains the walking time in seconds between all points
in the airport configuration. ITEMPT is next set to half-
word parameter PH9, which contains the cumulative walking
time in seconds for that passenger, plus halfword savevalue
TRVXH, to dbtain the new cumulative walking time. The new
cumulative walking time, ITEMPT, is then saved by assigning

it to halfword parameter 9. The program then branches back to

— the section 6f the program that called it via an assigned

GO TO statement. B-1-94

4.26 _ERROR ABEND AND END OF PROGRAM SECTION

The ERROR ABEND SECTICN is called from other parts of
the FORTM program whenever the error count exceeds ERRORS, the
maximum allowable number of errors. ERRORS has a default
value of 50. The message, 'ERROR END - PROGRAM TERMINATING DUE
TO ERROR COUNT EXCEEDING "ERROR"', is Written; and logic switch
JOBLS is placed in the set position. When control returns
to the GPSS program from the FORTM program, this switch is
always tested. When this switch is found to be in the set
position, the simulation is halted. The program then branches
to statement number 99999.

After the ERROR ABEND SECTION of the FORTM program there
is a list of CONTINUE statements with statement numbers 1 to 25
which act as dummy sections. All of these statements are commented
out due to the fact that there is an active section which has
that statement number as its beginning point. If an active
 section is deleted then the corresponding CONTINUE statement
should be uncommented in this section. |

Statement 99999 is a RETURN. This is the only exit

from the FORTM program back to the GPSS progfam. Finally,
all the format statements for the FORTM program are listed

at the end of the program.

B-1-95/B-1-96

APPENDIX B=-2

FLOWCHARTS FOR' FORTM SUBPROGRAMS

B-2-1/B=-2-2

Branch to statement punber that has the value of IVALUE (1)

INPUT SECTION

nitialize
" pounters to

ferc and set
%Cflﬂll‘. ulg
117 '

Read Card

Read card froo
main memory

(dev,10) vitn '
Damelist format

Call MNLINK2
to set wp
mnamondic
link transfer

Call CLINK2
to transfer
address lis
from GPSS

L

Place default value ADD
ir sec. in savevalue
XF

4

Place defaul? value DELETE
in sec, in savevalue
XFDXR

Place SCALE
in savevalue
SCLXH

I}

Use MHBASE
functions to cal.

Call MITLINK2
to set uo
nmemonic
link transfer

L

Call CLIMX2
to transfer
sddress list
from S

Use MHBASE

. functions to eal,
the base addresses
of the GPSS matriced

109

L

Place STARY

the base addresses
of the GPSS matrices

Place in amve-
value INDXP
the time of
end of simule-
tion in
secondsel

99

Yas
3
there
end jof . f1

in savevalue
CLIOH

A

[Calculate time of
start and time of
finish in hours
and minutes

Is
time of end
minutes GE time
of start

Subtract 1 hour
from time of
end: hours

end: minutes

Zero section of

nmain memory that
|vill contain inout|

'.l“-l’

Set TWOWAY
equal to '
BLARK

["EAD next

Increment
oard count

Increment
dutput line

Set line count|
to 1

&+

Write out page

title on pnew
2 I page (dev.6)

Vrite out
line (dev, 9)

Branch to input section according %o type of imput
specified in firgt L characters of line

TTLIL LIL T T T

DEPT or ARRV | GRTR AIRL

@00@@@0%@

NONE OF ABOVE

. ’ . Cheek 1f first
L charscters of

input lipe is a
facility type

)

GATE, CHEC, SECV, BAGC, CUST, ENTR. EXIT, ENPL, XFER, PAMG,
RENT, DEPL, IMMI, or TICX or. CONC

@ Kone of above
facility tyves|

104
Vrite error
message Tor
invalid geo—

Assign 1000 to
101 | PH1

FLIGHT SCHEDULE INPUT

Write out to
main memorvy

and reread with
a namelist
format of FL

v

Incremant NROW .
(ne, o2 rows in
flight schedule)

GATE ,PRY.
or TIME 2Q to
zere

Is
default

Set matrix MAL,

rite error
message; arror
in flight data

[assign 1000 to |
PR

input

1

Set error flaz,
NERRSW

2nd col, to
FLTRO
(NROV row)

get matrix MH) ©
first column to

1 for departure
(HROW row)

Set AIRLIN=
DEFLIN
(default
airline)

No

Set matrix MI1
3rd col. to

Fet matrix ME1.
kth eol. to

Set mstrix MR
6th eol, to
tine of flight
from start in
min,

103

105
10

Set MAL ecol. 7
to 1,2,0r 3 for
DOM,COM, or INT
respectively

15 Set MFL col. 8
to A/C tyoe

Set MF1 eol, 9
to GATE No.

| Set BAG =
DEFBAG
(dersult BAG

W Set MAl eol. 12
to Bax

' Subtract transfer,
; transfer out of
; gystem, and transi

{pax from pax. !
— — %o Set MY1, col. 10
| t0 PAX/SCALE
+0.51
Yes
Set MAl, col. 11
114 Set MALl, eol, 10 to TRANS. PAX
to no, of PAX SCALE + .51
P —ae —\-'....-_-..-._—_.
Set MAl, eol. 11 Set MHl, Col. 13
to no. cf transfer to transit Pu(Z)/scale-
AX, TPRX + + 0,51
Q.v‘ ! c ‘1'—-_..ﬁ
+ | Set MH1, Col., 16 |
:Set MH1, Col. 13 to transit PAX(3) /scale
to no. of transfer .
jout of system, . ._..___'_..r - e
' T?A.X(Z) H 101

R Voo
Set MH1, Col. 16
+0 no. of transit
pax, TPAX(3)

'{{ai

—

AIRLINE DATA INPUT

Vrite to main
memory and read
vith a nmmell

format of AL

Tor each nir-
lines specta
fied, place in’
MH2, eol. 1
ermlaning

eurd ne,

J

For each air-
lipe specio
field, place

in MH2, ecol 2
£ of vreticket
ed PAX uging
express *10

For each air=
line apeci=
fied, place in
MH2, col, 3
Bustor enplas=
ing ne.

@

TIME SERIES SPECIFICATIONS INPUT

GROUND TRANSPORT INPUT

18
182

2

Set variables
to be read in
to zerc

te to main

memory and read
vith namelint
format of GT

Dvide all
variables read
in by 100 to
obtain per-
centases *

J

Set I to 1,2,
or 3 for DOM,
COM, or INT

resvectively

Place in Mi2
(1.2-4) the
cumulative per.
centaces for
rental, bus. and
taxi respect-
ively with
Private car
excluded

2

(5

| Place in mM12

(I,1-4) the
cumulative per-
centaces for
private car,
rental car,
Bus, and raxi
for auxiliary
program

B~2-9

rite to main
nemory and resd
vith a namelist
format of TL
e —
J

Place in MAL
(1-3,1) S or
preticieted °10
for DOM, COM,
INT resnect=
ively

|

N
Place in MHL
(1-3,2) % pre=
ticketed direct
P100/% pretickete
ed £f both the
% oretick eted
and % preticket-
ed direct are
GT o

|
@)

B=2-10

in

memory and read
with 8 namelist
format of OV

(Vrite to main |

Is
TIME GT O

dos

Place in MHE
(*ROM, TO) and

Set TIMEs
D1ST/WALKSP
(distance/
valking
speed)

MAE (70, FROM)
the walking
time

B-2-11

PARM CARDS INPUT

BUS SCHEDULE INPUT

(Write to main
memory and read
rith & nemelist
|format of BU

Place in save-
variable ABUXE
the interval
in seconds
betvesn dus
arrivals

A

Flace in saves
variables DBUDOT
the interval in
Seconds betveen
bus departures

&

" B-2~12

GPSS&

STORAGE CAPACITY INPUT

{th & namelist
format of S

For each storage
specified get
no. of available

units in storage L

TRANSFER FLIGHT OVERRIDE INPUT

Write to main
imemory and read
vith a namelist
of TR

» .

Place in save=
value XPADH

tirme for adding|
rto trans fer
flicht tadle
in seconds

Yes

Place in save=

value XFDXR
time for
deleting from
transfer
flight table

in seconds

]

B-2-13

RUNTITLE CARD INPUT

no. of
title lines
oT

Inerement No.
of title lines
by ooe

Write to main
menory and read

Write error

current line
will not be

jused

B-2-14

GEOMETRY INPUT

Is
JOBTAPE
flag se

et J = No, of
Facility type
in GPSS=2

d

Set NOFAC to
number of
facility tyr

L

lank out leng
nape title in
the input line
if necessary -

’m_‘l!onun

memory and read
with a namelist

format of GE

Ifx or y malue
of coordinate
NE to zero,
then it is
Placed in MH3
(I,1-2)
respectively
(I i no. of
Iboint)

If closest Exit

Point or clesest En.

trance Point is
T zero (i.e.,
svecified) place
in ME3(I,3L)
respectively

B-2-15

Are
all facilitied
orocessed in
input ling

L_tyve

For each
facility soeci-
#ied on the card
increment line
count for “H9
(NGE0), and no.
of facility in

N

For each
facility set
M9 (NOED,1-3)
to facility
tyvoe, and point
no. respectively

If current point
number is greate
er than orevious
max. pt., set
max, pt. to
current point
no.

No
220 4—

22 Place in MA9

R (HGED k=B
MY parameters
specified in the
input line

227

facility

t¥pe an en-
trance or exi

Set facility
S¥pe to entrance
if exit; to exit]
LI enzrance

Cal. subseript

no, for mo. of .

available units |—> 220

in storage and

set equal to (NEXT
SZEELT) PAGE)

®

B-2-16

" ENPLANING AND DEPLANING CURB STORAGE ASSIGNMENT.

220
L.
*

Is

.THIS ENPLAN~— tES

~ING CURB

‘i NO
- 221 . 18
222 ¢ NO___THIS DEPLAN-
. _ING CURB

| SET 1870 (K)=
! TO SI2E/SCALE
|+ 0.5

e—e———

g e =
IF ISTO(K).LT.1
« BET

ISTO(K) = 1

—_—— e

PO e ——
.ICALCUTJ\TE
. SUBSCRIPT (K)
| FOR DEPLANING CURS
) DOUBLE PARKING
~STORAGE MNUMBER
. Moe— = 3
SET ISTO(K)m=
DPARK (I) /SCALE
+ 0.5

. — e e
IF ISTO(K).LT.)
SET i
ISTO (K)=l

. v
'CALCULATE SUBSTRIPT(X)
FOR DEPLANING CURB
JQUEUE AREA
‘STORAGE NUMBER

-

v
SET ISTO(K) =

CURB (I) /SCALE
I + 0.5
T

P —

'IF ISTO(K).LT.1
SET

ISTO(K)=1

L !

((222¢

i Y

BET ISTO(K) =

TO

'SIZE(I)/SCALE
+ 0.5

’

: . v
IF ISTO(K).LT.1
BET

ISTO(K) =l

(R
CALCULATE SUBSCRIPT(K)
FOR ENPLANING CURB
DOUBLE PARKING
STORAGE NUMBFR

. v
SET ISTO(K)=
TO DPARK(I)/
BCALE + 0.5

v
IF ISTO(K).LT.1
SET
ISTO(K)=1

. v o oL
CALCULATE SUBSCRIPT (K)
FOR ENPLANING CURB -
.QUEUE AREA STORAGE
'NUMBER

¢ V'_ !

! SET ISTO(R) =

TO CURB(I)/SCALE
+ 0.5

LS — - .

p—
!IF ISTO(K).LT.1

i SET
,ISTO(K)=1

- —

by

K—l
(PREVIOUS PAGE)

FLIGHT SCHEDULE AND FACILITY SORT:
WALKING TIME CALCULATION

error fla~
been se

(Return)

Sort flight

schedule (MA1)
time which

is iz ecol, 6

h A
Mlace -1 in
I (S30we1,1)
to indicate
that all
flights have
occurred

Iﬂo
b4

251 Sort faeility
table, Mi9; by f—————
Tacility type
and nuzber in

3 Yes ~ anv runsers
i‘::;"“ a4 ;':_ bean shipned Yes
facilities ¢ g derininiee an
each purher Leclities
that vas oki . Ko

a
|_ped to M !(’:ue in =3
1-20,1; no. of

Place in M |, » ——
(1.20'?) 1ndests :-:1. facility
Bo. of the ape
facility

velking +ipe
for pt. to »t, pair
previously define
in input

o
Cal valking
time for each
Pt. to pt. pair

L store {n MI§

B-2-18

END OF INDUT

CLOSEST ENTRANCE AND EXIT

Was
closest
entrance or
exit for a point

Yes

20k Determine closest
entrance and exit
to each point and
stors in MA3
G-maxer, 38h)
respectively

Write varning
message 1€ there
‘are any types of
' undefined

, Tacilities

Define save values
BDTXH, WWGXH, GRGXL,
GRTXL, CPEXM, CGTXL
PCB¥L,. CRBXH

o
Specify time for |

|[transit passengers

I : - —

Y
Write message;
AEad of Input

Data

"

99999 (Retum)

BAGGAGE UNLOAD

@)

Set MAXBAG
equal to

(IVALUE (2) 5
Set *o 10

Set NTEST
equal to
MAXBAG, the
incremental
baggage test

A -

et NOPB equal]
to 40, the
initial byte
parameter
numbar
=7

Set NENDCK
equal to zero

N

iCalculate Basd
laddress of MET
plus one for

Set.I to 1 [

tingle column

et ITEMPl to
address of

Add to the con-
tents of NTEST
the value of
MAXBAG

1

]
Decrement NOPB

sSign to Bytd
Parameter No.
NOPE the valug
64

MH7(I,1)

et ITEMP2 to
address of
+

L.HﬂllfrlalL._

Set NOBAGS
it0 contents of
MHE7(I,1)

Set contents
of MH7(I,1)
to zero

Set NENDCK to
zero

T

Assign to Byte

Parameter No.

NOPB the wvalug
I+l

ME7-
(I+1,1) LT

Al

contents of
MET (I+1:1)

Incremegt I

B-2-20

BAGCLAIM

-

3)

Set NPTFM
to current
point number

)

Set IV3 to
flight table
row number

Set J to row
number in MH9
‘for baggage

clai a

Set NPTTO to
point number
of baggage
claim area
nunber

L

Assign state=
ment number
309 to NEXT

@

Set PH2 to
NPTTO;
point number

Set PB4 to 4;
process code
for baggage

Set PH7 to J;
! MH9 row for
baggage claim

B-2-21

CUSTOMS

Q

Set NPTFM to
current point
numbexr

Set IV3 to MH9
row number for
immigration

v

D

Set L to asso-
ciated customs

facility
number; from
MHI (IV3,4)

Set J to MH9
row number
for associ-
ated customs
facility

Set NPTTO to

point number

of associated
customs
facility

N

Assign state-
ment number
313 to NEXT

28 to
storage, queue
number for as-
Sociated cus-

Set PH2 to
MOTTO; point
number

_

Set PHS to M;

storage,queue

number for as-
sociated

e

Set PE7 to Jj
M9 row number

vl

Set PBS to 1ll:
Process code
for customs

EN

@)

B-2-22

GROUND TRANSPORT MODE

Set TV2 to

IVALUE(2) :

/ nurder of pax
S ==7] being met (or

randor number
for aur:liary

zrm-ﬂ;t'

Set IV4 to
IVALUE (4} 3
Plighn type

702 snlx equal

value (IV3) be-
tween 0 and 1

K: Mode of
transportation

¥

SET JuJel
to allow 2
private
CAT modes

:

Aasigrn to PBE
jthe value of
(71 Mode of
T ation

Increment
errozr count,
NERCRT by one

Assign to PAJ
the value of
5.+ flac for
Preticketed/
not Praticket
ad

Write message:
PROBLEM IN

Assign to PBé
the value 4
(Bus Mode)

Assign to PAT
the value of L
Flag for pre=
ticheted Aot
orasicksrad

B=2-23

320

RENTACAR

99999

Set NPTFN to
IVALUE(2)
current point

Aesign 326 to
NREXT

324 |Set NPTTO to

MINPTO; int
ne. of closes
agency facie
lity counter

Yes

1s
MINPTO GT

Zerc? Was thare
defined facility

with correct
aAgency cod
mbe

Yes
Is

N 6T J:
all facilits
teasted

Set IV3 to
IVALUE (3) ;
car rental
agency code
number

Set 1 to |
™

DEX(11):
index number
in MA® for
car rental

.ﬂ:.l.l.?.u_.

Set J to row
number of las
rental agency
h;rsu:y in

5et ITEMP] to

Increment N b
1 r;v nm.z‘ Set ITEMP) to
Pf next rentaj large Aumber
pgency faci-
fLity in MH9
Set MINPTO
I| to zero
BSet L to
LTEMP; faci- Set LTEMP
licy number of to zaro
Floser agency
Founter
. |52t N o I

Tov number of
first zental
agency faci=
ity in sm9

Ser ITEMP1 to
ITEMF2; short-
er walking
Lfima

1s
ITEMP2 CT
ITEMPl: shorter
walking
time

LTEMP by 1;
-

car rental agen

Increment

faclilicy
number of
[Agency countes

Is
MN,4) NE ¢

code mumbe

Set NPTTO to
ME9 (N,3) ¢
point number
of facilicy
LTEMP for
Agency counte

MHE (NPTEM,
NPTTO) jwalk=
ing time be-
twrar mrinre

Write error
meEsage; MOne
IFIFD rAR
RFNTAL
EACILITIES

Ser NRCCSW to
l; error flag

Incremant N
by 1: row
Nuuber of
rental agency
faciliey in
b9

faciliey count=
ar ip

Increrent L by
1; faciliey
nurber of

Sat NPTTC to
MHS (N,3)y
point number

T J—
Set~ITEMPI to
Ki row number
of rental
agency faci-
lzty in MA9

Write errer
message: N2
FACILITIFS DF-
PINTO FOP CAR
RNEAL ACTNEY,
IV, K PACI-

LI™Y verpe
b Loy

Set MINPTO to
NPTTO; alter-
nate car
rental acency
Point number

B-2-24

Set M to
queue-storage
number of car
rental facil=-
ity number

lAssign to PH2
the value of
MINPTO;point
-number of

closest agency

7 gueue=-stor
age number L

the value of
ITEMP3; MHS
row number of
car rental

ssign to PB1lj{
process code
ifor car rental
jagency

99999

B-2.25

max. allowable
Grror count

b

Incrament

HERCNT

4TTor count

by 1;

=

Write message;
ATTEMPT TO

EIT TO

NUMBER IV4 VIA

B

BLOCK
FUNCTIOHN|

——

Set I to PRl
process fune-
tion number.

5et “KPTFH ta
TVALUE(2) g

point number
of current

Set IV] to
IVALUE (3}
current

t W
IVALUE (4) 4
next address

-

ING CURE wROM
FACILI™Y TYPE,
PACTYP (TV

B-2-26

N

\slviy

v

Set J to MH9-
(Iv3,); point

et J to xms-jf
(Iv3,3); point

number of !
nunber of previous |
pIagzous location !
location.]
L 7 {
Set NPTTO to s—ﬁet %‘5‘?‘"
MH3(J,3); MH3 (J,3);

nearest exit
point number

N

nearest exit °

L_point number

Set J to MH9~-
(Iv3,3); point
number of
Iprevious

locat% on |
]

location

N
Set NPTTO to
MH3(JT,3);
nearest exit

}

L

L_point number |

Set NPTTO to
MH3(J,3); .
nearest exit

Assign state-
ment number

Assign state-
ment numnber

Assign state=
nent number

2ssign state=
ment number

516 to NEXT 521 to NEXT 526 to NMEXT 531 to MEXT
4 2= £
50 950 50\
N~ -/
516 @ 526 53

jAssign to PH2
the value of
NPTTO; near=-
est exit

point number

Assign to PH2
the value of
NPTTO; near—
est exit

point number

99999

Set J to MHZ |

(Iv3,3); point

numker of

! previcus loca~

Ltion

|

. ——

| Set NPTTC to
MH3 (J,3);
nearest exit

 point numper |

semeePS

e _J-’_______

1 Assign statement

| number 53€ to
| NEXT

s
o

Assign to PH2
the value of
NPTTO; nearest
exit point
umber

Assign to PH2
the value of
NPTTO; near-
est exit

point number

@ |

Assign to PH2
the value of
NPTTC; near-
est exit

point number

99999

{950

B-2-27

IMMIGRATION

Increment
NEKCKT by one:
error count

ELH

L4 b

rive M!Sliil

PASSFMATR Afe

TEMP™D ™A co

TO IMIGRA™TON

NO PACILITIFS
FINF

SOIMMI GT ZERGT
Are any immigration
facilities defing

INDEXF(13)
index number
for

immi f ra ifen

Set K to J <+
NOIMMI: last
MRS row number
for immigra-

58t J to J +l;
firat MH9 row
number for
immigration
facility

by 1; immigra-

tion faeility
x

5et hWrTFM te
IVALUE(2) ;

Set IV to
IVALUE(3);
gate number

dgration faeie-
lity for gate

Set J to
INDEXP(13)e,;
MR9 row number
for designated
ammigration

faritirs:

i

Set NPTTO to
M9 (2,3);
reint number
of immigration
facilisy

Set M to DMMOS
+L=1; queve-
storage number
for immigration
faciliew

h
Aszion to PH
the value of
NPTTO;: point
number of
imeigrasion
faeilisy

Wrize .w,““:
NC IMMIGRA-
TION FACILITY

lncremant
NERCNT by 1,
error count

DEFINED POR
GATE, IViL
OSEN

the value of

M: queue-
Ftorage number
for imrigration
facilie

REsignce POT]

Asgian to PH §
the value c¢ =
MHS row number

Apsigr to PPY
the value o?

E¥ian te
the numbhes

Ty MFG row no
for irmiora-

tiar faciliey

the process
code for
irmiqration

B-2-28

DEPLANING CURB (P

Sat KPTIM to
TVALUE (2)
point numbar
of current
locations

Set IV1 vo
IVALUE(D),
current
process code
(other than

et -]
IVALUE (S),
Flight table
Tow the

.13 fa:iliw hid
ticket feneckis

Set I to PBly
Process func-

Write message;
ATTEMPT TO

Q?

Set I to MHl=-
(IVS,12) +
INDEXF (4): MHY
row number
for baggage
claim area

@

610
hY

Set I to
IVALUE (4);

Set I to
IVALUE (4) ¢
last MH9 row

15)

last MH9 row
b1}

Set ITEMPl to
MHS (I,4);
deplaning curdb
. facility no,

L]

69

facilit

N
46

Set I to
IVALUE (4); -
last MH9 row

number

et 1 to Set ITEMPl to
MH3 (1,4); de-
Planing

no

MH9 (I,4); Qe-
curb plaqing curb

Set J to
ITEMPL +
INDEXF (12} ;
MHY9 row number
of deplaning
curb facility

Set ITEMP1 to
MH9 (I,5);
parking fa-

Set NPTTO to
MHY (J,3);

point number
of deplaning

Assign state-
ment number
691 to NEXT

®

Set I to MH2
(1¥5,3)
&irline Nec.

Set I to ME2
(I,1)
EKPL.CURE NC.

!

Set K to DPCCS
+ ITEMPl=];
queue~gtorage
number of de-
planing curb

Set J to
I + INDEXF(8)
facility No. o

ENPL CUR:

1

i

%_

Set PH2 to
NPTTO; point
number of de~
planing curb
area

e —

Set PH7 to,J;
MH9 row number
of deplaning
curb area

current pro=
cess code for

Set PBll to 127 |

deplaning cuxb
ares

{892

B~2-30

Set IV2 to
IVALUE(2); Air-
line number

v

Set IV3 to
IVALUE(3);
Flight Table
Row Number

:

Set IVu 1o
IVALUE(4);
Number of Bags |
[

AS

~

1s . Yes
Ve BE. 0F @
*Bags
’ No

Set M to MH2
(Iv2,1); Curb

side Number for
Airline

IVALUE(S) EQ |
. 1l;Greeter

—

No

Do 713 k-1, 10

et L to IESCH

(X,M); Enplann-' 713
ing Curb to test

ifor availabilitq

Assign storage
No. J to PHE; 1
to PB10 flag for

curbside parkin
]F Ne

Calculate Sub-
script ITEMF3
from 1l1%(J-1)+2

|
|

Set J=EPCBS+L-"
1; Storage No. '
for enplaning

Yes

Curb No. L |
.

Mug{ITEMNTL 3
L7 0; Dure

Eer ITEMP1 to

INDEXF (8)+L;

MHS Row No. for
Enplaning Curb

DEPLANING CURB (CARS AND GREETERS

Calculate sui=
serint ITEMP3
from 11%(J-1)

i e
Assign J to
PHE; 2 te PElC;
Flag for
double parking,

S 73 1715

Continue; {;ssign 0 to
Terminus of {PH6, 4 to PBl0O;
DO LOOP flag for
‘Pecirculation
l i -
Set L to M;

Enplaning curb
for IV2 Airline

i ' o

F 716
Set J to EPQCS A
+L-1; storage "
number for L & ¥

curbside queue

)
—_— + -

Set J equal to
e . M + INDEXF(8);
! MHS Row Number

'Calculate sub- _;
script ITEMP3 i
from 11%(J-1)+2 i ’

' Assign 8 to

. PB11l; process
; code for enplan-
ing cugbside

curk [
queue

EQ 03 NO-;{-};CE JES 7T !
available in —f~715 ¥

718

ND
T i

Assign J to PHB,
3 to PBlo, flag
for curbside

B=2-32

717

'Set J to MH9(T, &)
+INDEXF(12);
deplaning curb
number plus index

o. for deplaning
urbsides

-

Assign 12 to
,PBll; process
tcode for
deplaning curb

T

ICalculate travel
time from park-
ing to curbside

(]

—_—— — -

.
Assign NPTTO
to PH2; point

; number of
. deplaning curb

Pk

- v

EAssign J to
1 PH7; facility
. number

+

99999

v

/,':’00

Set 1 to MH(IV3,

12) + INDEXF(4);

MH2 Row number 4
for baggage clain
area assigned tc
flight

v

Is ~

IVS EG 1, . b 17
Greeter _ﬂ,)

e — W Yo
Set J to MHO(I,4)
+ DPCBS-1;
deplaning curb-
Eiﬁg_storage no,
j
- - v -
Get GPSS sub-
script ITEMP3
from 11#(J-1)+2

—_——e——

7 ISTO(IT*H 3

EQ 0; storage
full

v
Assign GPSS
storage number
J to PH6
i |

e ——]

PRETEL. 4 :

[Set PB10 equal
ite 1, flag for
‘eurb slot

Iser J tomna(r,u)
}+ DPFDPS=-1;
d?uale Egs;lng

-
g

|Get GPSS sub-
iseript ITE“r3
ifrom 11%(J-1)+2

e

Y\

Ve ISTO(ITE!‘\P‘SJ .

EQ 0
A storage
fug"]'No
— ¥
vAsszgn GPSS
'Storage nunber
° J to PHs

i
——

.I e
-V _
F;;t PEL10 egual
‘to 2; flag for
~doukle parking |

. slot ‘

v

Set J e%uaI tET'
MHS(I,4) +
DPOCS-1

Set ITEMF3 to
11% (J=1)+2

ISTO(ITE<
£Q 03; queue
rea full

No

3

g v
i
]
JAssign 7 10
'\I..
~ . ¥
0 Assign u 1c
! PEl2; flag
i for recircula-
‘10“'
=

;i> 29599

Assign 3 to
r?SlO; flag for
-curk queue slet

L_A_ j
s I
: Aesign GPSS

Storage number
J to PEé

L

B-2-33

ENPLANING CURB

308 Set 1TFMP2 en
HHZ;IV;,J); . Set 1V2 to y o
ur '".".,.b."' IVALUE(2); asr fe=i 11)
for bom 4 line number
for bus stop
for airline

Sex IV] to
IVALUE (3]} ;
Lransportation
oo

TEMP2 GT O: I
us stop enplaning

Yeg

r different from
regular enplaning
curb number

Set J to MH2-
(Iv2,1) en~
planing curb
facilicy

Set ITEMP2 to
MH21IV2,1)
reqular en-
planing ecurb
number for

Set ITEMPl to
INDEXF(8)+

ITEMP2; MHY
Tow number for
enplaning curb

.

Set NPTTO to
MHY (ITEMPL,3)
point number
for enplaning

S5et L to
:;:"!’;;cgoint IEPSCHI(K,J)
enplaning curb
nurber that
car vill try
Set PR7 to for
ITEMPL; M9
Tov aumbar

Set ITEMP1 to
INDEXF (8) +L; = i
MES row number - ;
for enplaning ““--a.le Fars lng 2
¢ ar tnN 2 r‘s__\
urh. . .
S

W9 (ITEMPL,3) EQN o0
O:Is it a dumm,
Sat NPTTO to
MAS (ITEMPL,D); Se: ITEMP] to
| point number 11 (Me])a?:
of enplaning subscript for
—nﬂT f

number o
available
units in
Anaign co pi3 storage
the value of »
NPTTO; point

AsSEign to PHT
the value of
1TFMPL; MFS row
number for

anplanina curb

B-2-34

8oy

g=

1

Set M equal to
EPDPS t+ L-1;
double parking -
storage number,
—curb L. __

N

‘Calculate sub-
script number
ITEMP3 from

11 * (J-1)+2
T |

-~

Is

0
STO(ITEMP3) EQ¥ °

e

03 no doubl
parkin
ac

T NO

kssign M to PHS,
2 to PB10O; flag:
for double i
parking

—— e e ———— e

I

¥

803

805

T

Assign 0 to PH5
0 to PH6,u4 to
PB10; flag for
recirculation

T

99999
\.

Continue; tep-
minus of ;
~ DO LooP ‘J

-

.. ¥
set 13,

fenplaning curb
, for IV2 airline

| J—

ki "
FSet ITEMPL to
INDEXF(8) +L;
]facility number
{for curbside

f -
Set M to EPQCS
+L-1; GPSS
storage number
for curbside

T

‘.
Calculate sub-
script ITEMP3
from 11%(M-1)
+2

—_——

' PHG, 3 to PBl0;
flag for curb
_ queue

B-2-35

ENTRANCE

rd

Set NPTFM to
IVALUE(2); the
point number
of the current
location

—

Set NPTTO to
MH3 (NPTFM,4) 1
the nearest
entrance
point number

-\

Assign state-
ment number
813 to NEXT

Assign to PH2
the value of
NPTTO; the
entrance
point number

B-2-36

TICKETING AND CHECKIN

-

! !
— Eet NPTFM to IVAL

@_}én: point numberms.!
f current locatiom

Set IV3 to IVALUE

Eq. 33
q;caleter or gr
pax

|(3)7 airline code
umbar

%
=

|Set T to INDEXF |
1 (14) ; index number|
ifor full service |

344

et K to J+NOTICK
last MHY9 row no.
for full service
ticket facilit

Set J to J+l; first
MR9 row no. for A
full service

| ticket facility

[Set L to zero |

1

:su I to J; first
IMHY row no.

)

| Increment L by 1;
number of full
service ticket

| facility

/ MH9 (I, 4) Eq IV

igs airline code for
acility same as air-
line code for

iIncrement I by 1;
inext full service
tticket facility

I GT K; have
all full service
facilities bee

Me

B-2-37

rite Message: NO
ICKETS & CHECKIM
ACILITIFS DEFINE

T
full service 1
ticket facility

Set I INDEXF(14)+1
9 row no. for
first full service

Set N to MH9(I,d);
airline code for
first full service

—

Prit- Message: NO
TICKETS AND CHECKIN|
'FACILITY DEFINED

|FOR AIRLINE CODE:
IV3, FACILITY OF

gueue-storage no.
for full service
icket facility

lock location to be
transferred to for
full service ticket
|faciliey

L

et N to 1l4; process
de for full service
icket facility

ﬁ“ ITEMP1 to CHEK3;

\Eip

850

|set 3 to INDEXF(2)}
index number for
express checkin L, :

et K to J+NOCHEC;
last MH9 row no.

ifor express checkin
facilities

. A

ket J to J+1; firs

9 row no. for

xpress checkin
1li

Set I to J; first |
MH9 row no. for
express checkin

£

|Increment L by 1; 'Ir(
number of express |
check in facility '

MHY (I,4) EQ IV3;
is airline code for fac-
"~ ility same as airline

\-odawpas seng

Fncromt I by l; |
c

ext express
heckin facility

M=

full service ticket
facility

ISet X to J+NOTICK;
last MH9 row no.
fr:u: full ser?ice

iticket facility |
mﬁl%ﬁﬁ

MH9 row number for
full service ticke
facility

N

{Hﬂ_lsu:.(:o zerc [

B-2-39

.

H,
Eee I to J; first 4

ull Bervice ticke
acility

[Increment L by 1; '

0. of full servic1
icket i

Is
9(I,4) BQ IV
is airline code for

acility same as

!Inc:ement I By 1;
| next full service
| ticket facility

N

Write Message: NO
TLICKETS & CHECKIN
FOR ENPLANING

et I to INDEXF (14}
1; MA9 row no. fos
irst full_service

et N to MHY (I,4);
irline code number

Write message; NO |
EXPRESS CHECKIN FACe
ILITY DEFINED FOR
AIRLINE CODE IV2
F¥eL SERVICE FACILT
OF AIRLINE CODE

fncrement NERCNT by
L;: error

Set L to 1; first
full service

ticket fagility _

Is
ERCNT EQ-: ERRO,

count been

B-2-40

(ss;

Set M to TICQS+L~-1;
ueue-s$torage no.
or full service

ticket facility
—number L

Set ITEMPl to CHEK3;
block location for

Set N to 14; process
code for full service
ticket facility

857

85

Set M to CHKQS=1+L;
queue~-storage number
for express checkin
number L

code for exprass

l Set N to 2; process
Lcheckin

A

Set ITEMPl to CHECK2:
block location for
exprass checkin

:g‘_s_‘)
&

Set NPTTO to MH9
(I,3); point no.
of facilitv

Assign statement
B56 to NEXT

&

9999;

{Assign to PRLI
the value of N
Current process
ode

Assign to PH7 th
value of I; the
MHY row no.

Assign to PH5 th
value of M: the

Assign to PH4
the value of
ITEMPl; block
|location

Assign to PH2
the value of
NPTTO: point
po. of facili

B-2-41

Write Message: NO
SECURITY FACILITY
DEFINED FOR GATE
IV3. SECURITY FAC-
ILITY NUMBER 1
S ASSIGN
\"\—-

Set MH9(IV3,4) to
1l; assign security
facility 1 as
security facility
for gate number
V3

Set I to 1;
security facility
number

SECURITY

l Set NPTFM to IVALUE
(2); point no, of
|_current location

{ Set IV3 to IVALUE
2 a

Set I to MHY(IV3,4)
Security facility
number for gate IV3

Set J to INDEXF(3)
+I; MHY9 row no. for
security facility

Set M to SECQS+I-1;
queue~storage fac-
ility number for
security facility
Lnumber I

Set NPTTO to MH9
(J,3); point no.
it

of security facil

hssign statemant
fumber 861 to NEXT

Assign to PH2 the
value of NPTTO;
point number

ASEign to PHS the
value of M; queuvert

Etora?a:numbg; ,

Assign PEM the
value of J; MH9
row number

|

Assign PBll the
value of 3; pro-
cess code for
securit

!
thy

B-2-42

GATE (ENPLANING PAX)

Set I to 1

Incremsent I
by 1

Is
’,/ I GT NOGATE:;
have all gatas

§72]

the flight table

row number

; assign gate

et ME1(J,9) to
umbers for f£ligh]

rite Message:
GATE IV3 NOT .
DEFINED CHECK DATA
FOP DEPARTING -
FLIGHT MH1(J,

Set IV3 to I;
new_gate numbe

Set NFTTO to MH

g

iSet NPTFM to IVALUE
(2); the point no.
pf the current
location

et IV3 to IVALUE
(3); the gate no.

(IV3,3) the poin

Set NPTTO to ms"l

no. of the gate

ssign statement
numbar 874 to NEXT

874

y

Set M to GAQSL+IV3=
1l;: gueue-storage
number for gate
number IV3

¥

iAssign to PH2 thel
value of NPTTO:

the point number
of the gate |

Assign to PH5 thef
value of M; the
queue~storage no.

[Assian to PH
value of IV,

(IV3,3); point
number of new

B_2—43

PARKING (PAX)
\16 i
| Set NPTFM to IVALUE

l (2), point no. of

i Set 1IV3 to IVALUE (5),

l_transportation mode |

?"S'E‘IVI'{O IVALUE
(4); deplanxng/en
I planing fla

| Set IV6 to IVALUE(E): Set IVS to IVALUE

! Flag for lot number ﬁ-*-‘j (5); car rental
I only agency nggggr

Is
Iv3 EQL
Is vehicle

Does passenger
drive self

1 set I to PH4; r’

address iarumate;
1

' Write Message: IN-
| VALID CALL TO FORTM
|
|

PARKING. PH2aNPTFM,
PH4{mI, PR7=IV .
B6=IV3,

}

Increment NERCNT by
| W~ i 1li error count

Is
V3.EQ.1:
Is this privat
vehicle

B-2-44

Set LOTNO.

EQ 1; ganaralf

parking area

—
728
S

\i#

Set LOTNO EQ.
PB14; parking

lot number

LOTNO. EQ O
is parking are;
assigneg

Set PBl4 to LOTHO;
parking lot numbex

7

parking

Set PH11l to 10;
process code for

f"‘

[set T to tNoEXF(11): |
index number for
tal cars
N

Set J to I+NORENT:
last MH9 row no.

|

for r‘nfijSEKa

Increment I by 1:
first MH9 row no.

| Set N to I

not same as rental

5 passenger acengy code

Set L to MH9 (N,5):;
parking facxlity no.
for rental agen

Increment N by 1;
next MH9 row no.
for rental agency

:Set M to PARQS
'+L=1; queue-

Is

et PH7 to N; MH9
ow no., of parking

Set PHS to M;

of parking
facility

queue-storage no

facilit

Set PH2 to value
of NPTTO; point
no. of parking

v N GT J; all

antal agencies
en trie
ywesg

Assign statement

Jiz_xr_'__.

numbezr 727 to..

725

Set PBl4 to LOTNO:
area number

s

723

lSet N to INDEXF
i{(10)+L; MHY9 row
number for park=-

; 8torage for
lparking facil-
lity number L

Set N to INDEXP(10)
+ LOTNO; MH9 row

L_—-—-—} number for parking

facility

A .

Set M to PARQS +

ility LOTNO

LOTNO-1 queue-storage
no. for oarking fac-

734 Eet NPTTO to ME9
(N,3), paint no.
£

Is it first
handside Facj

B-2-45

TRANSFER PAX

2

Set M to IVALUE(S5);
Gate no. of arrive-

827
et IVZ to IVALUE(Z2);
transfer/transit flag

Y
Branch to B2] if

transfer, A2 if
transit

Set ITEMP3 to MH9
(M,4) security no.
also concourse no.

Write Message:'NO
SECURITY FACILITY
DEFINED FOR GATE'
M, ‘SECURITY FAC-
ILITY NUMBER
SSIGNED'

Set MHS (M,4) to
1. Assign .

Security ¢a;-'-;
no. 1 to gate

Set ITEMF3 to
1 for security

Has security fa
lity been specifieg
for the gate

Assign to PHE the
block location of
CTRLo

Set N to remainder
of IVALUE (2)/NOFXFR
+1; picks a random
number between 1

_and NOFXER

Set K to PBS;
number in party

Increment MH1} ’
(ITEMP3) by K;

add to count of ‘
pPax leaving

L.

Set I to MHS (N):;
MH1 row no. of

Set K to MH1(I,ll);

subscript for no.

of seats still

available gor trans- |
]

Increment Save-
value XFRXH;
j increment count

of pax not get-
ting transfer
|_ Llight

Assign to PH4
the block
location of

g

TEX99
J

Assign to PHS$
the block
location of
CTRL1

Decrement MH1(I,ll)
by one; decrement
the number of seats
available for
ransfe assengers

99999

B-2-4¢

—

\
| Set L t5 N7 no.
in MHS of flight

fdust filled

Set ITEMP3 to
MHS (L) ; sub-

script of trans-

! fer flight in

a

Set ITEMP2 to

ITEMP3+1l; sub-
script of next
i 5

Set MHS (ITEMP3)
to MHS (ITEMP3):
move {light down
in MHS matrix

Increment L by 1

Mo

been moved
down

GT NOPXFR;
have all flights

Decrement NOFXFR by
1l; decrement no. of
transfer flights
available by one

{

Is
MH1(I,ll) GT O
a5 space for transfer
been filled on
flight

© 820

Yes .y

Assign I ta_Phl;
transfer flight
row in MH1

(=3

(=)

Set K to TVALUE(3);
arriving flight no.
for transit pax

!

Set IGAT to MHY
(K,9); gate no.
of arriving flight

N

Set K to RK+l, to
examine MH1 flights
later than arrival
flight

Set I to K; row
following arrival
fliaght

« end of table;
arriving or depa

eg,zero,or Pos

ng flight
positive

Increment

826

Set K to PBS:
no. of transit
pax

L A
‘Incramnn: MH1l
by K

Increment :JFRYXH
by 1,add transit
pax to transfer pax
count without
transfer flichts

—
Assign TRX99 to
PH4,CTRL1 to PHSE;
Terminate transit

CTRLO to PHS8;
route transit

Assign I to PH1,

pax to next fligh4y

B-2-48

TRANSFER FLIGHTS

9

Set IV2 to IVALUE(2):
IHHI Row number

|
Set IV3 to IVALUE(3);
i flag for initialzed/
delete/add/ticket/

[counter pt.no.=0/1/2/3

33

erd of daile zerc, or DoOs.;

Is
11(I,1) ne

et ITEMPl to MHL
{I,6)+60; time fr
tart in seconds

Assign I to
PH1; MH1 row
number of
" last flight
tried in
initialization
of flight table

Increment I by
1

Hl(I,1ll) EQ ©O;
Is there no rrmom on

| 1

Set MHS5 (NOFXFR) to
I; place flight in
transfer table

Increment NOFXFR by
1; add flight to
count of tlighes in
+ransfer table

B-2-49

Is
MH5 (1) NE
Iv2: Is first flight
in transfer table
not the one to

A ra
ISet Itol

s

ol

et ITEMPl to sub-
cript of flight in
ransfer tabla.

[Set ITEMP2 to ITEMPI
+1l; subscript for

next flight in trans-
fer table

A\
Move contents of

MHS (ITEMP2) to
MHS (ITEMP1):

!

Increment I by 1]

Decrement NOFXFR
by 1; decrease count
of transfer flight by 1

33/

rite Message:
ADDITION OF DE-
[PARTING FLIGHT,
H1 ROW NO. IV2,
O TRANSFER FLIGH™
'ABLE WOULD HAVE
CREATED OVER FLOW

Is
NOFXFR EQ 100:;
s_flight table
full

NO
neremant NOFXFR by
i increase count
f transfer flight

L :

Set MH5 (NOFXFR) to
IV2; place flight

in transfer table

which is MHS

59999

&

B-2-50

Set IARLIN to "
MHL (IV2,3);
et airline no.

Set IROWNO to
MH8 (14,2); index
r

Set INUMTC to
MHB (14,1) :no. of
ticket counters

N
Set ITEMPl to
IROWNO + 1; first
ticket counter in

(MHS

4! Assign IPTNO
Set ITEMP2 to =

IROWNO + INVMTC:
last ticket counte

row no, Set IPTNO to
MH9-(I,3); -
. ticket counter|
[Set T to ITEMPI | |pt. me.

No
Set ITEMP2 to
l INCREMENT I by :ﬂ MH9 (I,4)
A
Is -
DS error coiittiees
ITEMP2

B-2=51

MISCELLANEOUS ERROR CONDITIONS

®

Set IV2 to

IVALUE (2);
type of
Iror !

2

[
[ig

Branch to corresponding ztatement numbers whanf Iv2 18 one of the following numbers:

. . — . b 2 -
1 2 3 r o4 1.5 T84 _l‘__'r T (s ity SR L% L -
I
I

1 - L
GO TO 01 902 903 904 [905 isp06

Write Message: Write Message:
VEHICLE XAC PAX XAC WITH
IVALUE (3) UN- TRANSPORT MODE
ABLE TO MATCH IVALUE (3) ENTER-
WITH PAX AT DE- ED BLOCR DPLCO.
PLANING CURB. CHECK USER CHAIN
CHECK USER 'ERROR' FOR XACN
CHAIN 'ERROR' IVALUE (4

FOR THIS

B-2-52

Aranch to corresponding statement numbe

FORMATED REPORTS

Set €1 to IVALUE
(2) relative
clock time

ke

Set I to 1s
facility type

Set NSKTCH o
2ero: flag for
undefined no.

Set X to MHE(I,1)
count of facility
type I

Set J to MME(I,2);
index no. of faci=
lity type I

—

Set X to K+J: no.
of lost facility
of type I in MH9

n

S5et J to J+1: no.
of first faciliey

of type I im MH9

when I is one of the following numbers:

1 2 3 4 5 6 7 L} 9 10 0 12 13 15 16 17 18 19 20 H
400 [400 | 400 | 450 | 400 450 | 450 | 450 [450 | 450 400 430] 400 | 400 | 450 | 450 450 450 | 450 | 450 5:
Continue to make Teports for gates, customs, security, express checkin, tiecketing, car rantal, and
immigration, skip other facilicy typas.

Branch to corresponding statement number when I is one of the following numbers:

1 2 3 4 5 [?] 9 10 1 13 13 15 16 17 18 19 20 I
401 | 402 [403 | 450 | 408 450 | 450 | 450 | 430 | 450 | 411 450 | 413 | 414 | 450 | ¢s0 | 450 450 | 450 | 450 f;

T ~. —

401 N, 403 408 i L 413 413

Write Repord Write Repory Write Raportg Write Raport Write Report Wriee Report Write HRepord
Title: Titla: Title: Title: Title: Car Title: Title:
Boarding Express Secuirty Cuscoms Rental Immigration Tickess &
Gate Check=In Facilicy Facility Agency Facilaey Cheekan

Faecility Facility Report Repore Faciliey Report Facility
Repore Raport Report Repore

&

@9

€9

(@9

)

B-2-53

Print Column .. 43¢

\“‘ej‘i"}T—

ks
| Set NCOUNT to 11
! + NTLINS; Number
} of lines printed
i on page

Set ITEMPl to

PACQSX(I); base

value for queue
| and storage

L

Set IQUER to

4* (ITEMP-1); part
of subscript for
queue attribute,
comulative time
intergal

Set IQUEI to
IQUFR + IQUER:
part of subscript
for queue
attributes

[Set ISTOX to II®
(ITEMP-1); part
of subscript for
storage
attributes

[[Bet ITEMPI to
ITEMP1-FACQSX(I)
+1l; set ITEMP1
to 1

Set N to J; first|
facility of type
I in MH9

H9(N,3) EQ 07
is facility

Set NCOUNT to
NCOUNT +2; add
two to number of
lines printed on
page

Is
NCOUNT LESS;
has full page bee
printed

B-2-54

Write Simulation
title at top of

Q

Write Massage:
(All times in
minutes:second

4 4 414 il 12 43 14 i3 18 17 ie 1% ac -

421 | 422 423 450 | 425 450 | 450 | 450 | 450] 450| 431 450 4233 434 | 450 | 450 450 450 | 450(430 ,SE
=~ \\

Jﬂ. 422 421 428 1 33 434
%rits Report] [Write Report i Write Reporty |Wrice Repord | Wrive Repor Write Repcss
Title: Title: Title: Title: cCar Title: Title:
Boarding Express Yy Customs Rental Immigratien Tickees &
Gate Checkln Facility Faciliey Agency Facility Checksrn
Facility Facilicy Rapore Report Facilicy Mpore Facilicy
Report Repore /r\ Raport % .

Sat NCOUNT to
L1+NTLINS: ne.
'of lines print-

Print Column
Headangs

S5et ITEMPZ to
current contants
of storage plus
nurber of availd
able units in
BLorag

5et NSWTCH to

Set ITEMP] o
ISTO(ISTOX+6)

*SCALE; entry
count times
scale

Iis
ITEMF) GT 07
Is entry count
reater than

B-2-55

Set ITEMP4 to ISTO
(ISTOX+7); maximum
storaga contents

which gives maximun
number of agents

busy

et ITEMP5 to FSTO
{ISTOX+3)/Cl cumu=
ative time inter=-

verage number of
ol

Set ITEMP6 to FS5TQ
(ISTOX+3) /ITEMP3
icumulative time
intercal/entry .
Count*SCALE when
gives average tims
per patron in -

bet ITEMPEM to

[TEMP6/60; average
kime per patron in
ri.nut.uu (trancated

fter changing
verage time par
atron in minutes

Il

. ESet ITEMP7 to IQ
| (IQUEI+2) *SCALE;

Set ITEMPE,XTEMP4
ITM1oM,+ITM10S to
2erc; set values
to be printed out
to zero

queue size

total entry count
®SCALE

TEMPT GT 0]
entry count

e
Set ITEMPB to IQUH
(IQUEI+7) *SCALE;

S5et ITM10S to
remainder of ITMPLO
divided by 10: re-
mainder in seconds
after changing ave-
erage time in

0 minutes

et ITMIOM to
TMP10/60; average
ime in gueue in
imyutes (truncated

et XTEMPY9 to PQUE
(IQUER+2) *SCALE /el ;
lcumulative time
intergal *SCALE
idivided by relative
lclock time which
|gives average

E

Set ITMP1C to FQUE
(TIQUER+2) *SCALE/C1 ;
cumulative clock
finterval’ *SCALE
ivided by relativs
lock time whiech
gives average time
in queue in seconds|

B-2-56

rite line of

ifacility report
for facility nd.
ITEMP1

Increment ITEMPl by
@___31: set ITEMPl ¢o

NEXT facility ber
in type I

Set IQUER to IQUER+4
+4; set part of sub~
script for queue
attribute for cumi-
time integral to
next facility

Set IQUEI to IQUEI+
; set part of sube
script for quaue
attributes to next
faciliey

L

et ISTOX to ISPAX
11; set part of
ubscript for
torage attributes
o next facility

ald

Increment N by 1:
IMH9 row number for
mext facllity

Print Message:¥ X
Indicates Undefime
(Unlimited) number |Yiu
pf AGENTS.

did any facility o
type 1 have an undefined
number of
agents

NO

4 Increment I by 1:
Set 1 to next urpe(—--—-é:a
i1liry

rite line of
facility report(

for facility nd.

%

Increment ITEMPL by

@ sl; set ITEMP1 to
NEXT facility number
lin type I

Set IQUER to IQUER+4
+4; set part of sub-
script for queue
attribute for cumi-
time integral to
next facility

&

Set IQUEI to IQUEI+
B; set part of sub-
script for queue
attributes to next
facility

L

et ISTOX to ISPAX
11; set part of
ubscript for
torage attributes
to next facility

L

Increment N by 1;
'MHS row number for
next facility

rint Message: Al
times in minu

rint Message:¥ %
ndicates Undefirmed
(Unlimited) number | Y«u
f AGENTS.

NSWTCH EQ 1;
did any facility of

type I have an undefined
\M“\\\H number of

~\“agents

. ke

. Increment I by 1;
’ ———set I to next typek 5

Is
I GT 20;
ave all faeilit

O
L
types been
‘\\\\\Erigg,//

Yas,

T S

CLOCK UPDATE

®
'y

Set ITEMPl to
CLKXH+IVALUE
(2)/60; in=-
crement .clock

Set ITEMPl to
ITEMP1+40; in-
crement hours
by 1

Set CLEXH to I
ITEMP1l; new
clock time

B=2-59

653

SNAPSHOTS

CURRENT CLOCK
TIME IN ITEMP1

NO. OF PRINTED
SNAPSHOT LINES
ON PAGE ,
LT.50?

SET LINSNP TO
NUMBER OF
TITLE LIMES

Y

WRITE SNAPSHOT
TITLES AND HEADINGS

654 CONTINUE

i DO 654
l1=1,00

Y

DET ITEMP(I) TO
LSAVEM (1) * SCALE

\

WRITE ITEMP1, ITEMPA

B-2-60

INCREMENT LINSHPBYl

15
LINSNX
LT.50?
TIME SERIES
LINES LT.50,

SET LINSNX TO
NUMBER OF
TITLE LINES

Y

WRITE TIME SERIES
TITLES AND HEADINGS

;

INCREMENT LINSNX
BY1

i

DO 660 IR = 1,24

Y

CALCULATE SUBSCRIPT
FROM INPUT GPSTD (IR}

7

CALCULATE SUBSCRIPT
FOR ENTRY COUNT

960

/

CALCULATE SUBSCRIPT
FOR CURRENT CONTENTS

\

SET X EXTCT TO ENTRY
COUNT OF DESIGNATED STORAGE

B-2-61

965

967

CALCULATE OUTFLOW
STORE IN FLOW

y

SET ENTRCT (IR) AND
CRCON (IR) TO CURRENT
ENTRY COUNT
AND CONTENTS

¥

SET TSSOUT (IR+1)
TO FLOW

v

SELECT QUEUE NUMBER
FROM INPUT GASTO (IR)

|

CALCULATE QUEUE
LENGTH SUBSCRIPT, JQUE

v

SET TSQUE (IR+1) TO
QUEUE LENGTH

y

SELECT HALFWORD NUMBER
FROM INPUT GPHALF (IR)

v

CALCULATE FLOW FROM
HALFWORD SAVEVALUE

y

STORE FLOW VALUE
IN TSHALF (IR+1)

B-2-62

SET JTHLF (IR) TO
CUMULATIVE VALUE ISHLF

660 CONTINUE

!

DO 969 IL = 1,7

v

SET JSECFL TO
CUMULATIVE SECURITY
OUTFLOW IN MH12(IL)

!

CALCULATE CURRENT SECURITY
FLOW, STORE IN TSFLOW (FL+l)

Y

969 STORE CUMULATIVE SECURITY
FLOW IN ISECFL(IL)

L

DO 973 IT = 1,15

A

SET JTCKFL TO CUMULATIVE
FULL SERVICE COUNTER OUTFLOW
IN MH14(IT)

B-2-63

CALCULATE CURRENT FULL
SERVICE FLOW, STORE
IN TTFLOW(IT+1)

|

STORE CUMULATIVE FULL
SERVICE FLOW IN ITCKFL(IL)

\

WRITE TSSOUT, TSQUE
TSHALF, TSFLOW, TTFLOW, ON
FILE 13 FOR PRINT OUT

\

WRITE TSSOUT, TSQUE
TAHALF, TSFLOW, TTFLOW, ON
ON FILE 14 FOR STORAGE

99999

CHANGE CARD PROCESSING

23
Does
IVALUE (2)
EQ 2; are - S=%
* current contents “Yes ~ P 590

areater than’
new .capacity

v No
Doas
ICHNGl EQO;
e processing \‘-No
first change
card .

)Ff Yes

Does
SERVRS (1).
EQ 07 data ™\ No y :PGO
™\ present on o
N\, input .-

card -~
(Yes

Set I=l,index of servers array,
M = 0 facility count on data card

>580

— g m——

Set L =1,
loop counter

e —

18
SERVRS (I
EQ FACTP (1}? Yes 553
etermine facif:'__—___-%y

y type ~

Increment L by 1] NO

e &1 20

No o

-Yes

B-2-65

” o

o

/

. 553
| a;‘ o
:Set J to FACOSX(L);

pumber of first
‘storage in type i

v
Does
J EO 0;

invalid fac-
\\\ility type
b)

o
v

Set J = J-1;
iindex for facility

Yes

Bue _i[
354 oot 1 = 141;

increment subscript
for SERVRS array

R

‘Set IFACNO EQ
SERVRS(I); next !
(data item in SERVRS;
array]

4

—
. -""\'
IFACNO LT 03 Yes 551
 another facil-\‘H A
ity tyoe
‘k‘..- “/l No
| ;
. Is —
IFACNO GT '
NFACSM(L,1) ; Yes 557
. GT number ;ES-——————}"#/
facility
L
E¥p
No

{Egi K1=11%(J+FACNO=1)+1;
subscript for current
contents of storage

v

7PP

B-2-66

-

PP

, Set K2=Kl+l; !
subscript for
_remaining capzcity

e

Set ICONT to
ISTO(K1) ;
current contents

¥

Set IRCAP to
ISTO(K2); remain-
}ng capacity

i = e ———

vy __
Increment I by 1;
subscript for next
data item in SERVRS
array

Set NEWCAP to
SERVRS(I); new
input capacity

Is
—
NEWCAP LT 0% 557

ERROR

“Is
NEWCAP GE
/ ICONT:
7 capacity greate
< than or egqual
. to currant -
\contents

555

l

“set ISTO(K2) 07 |
remove unused
Icapacity |

—

Set M=M+1; .
subscript for ‘

MH7 array |

A

_//

B-2-67

- o

v QQ
~

|Set MH7 (M,1)
i to J+FACNO;
GPSS storage no

s p r e ——
AL/

iSet MH?(H+30.1L \
|{to NEWCAP . '
L . e |

X
_/

Fet ISTO(K) =NEWCAP- !
ICONT; remaining capacity |
made egual to new capacity
minus current contents '

[set M-r-ﬂ-l_:_ i increment
lyﬂ? subscript |

i F.

A e
{Set MH7(M,1) to
\J+ IFACNO; GPSS
:Storage number

Set ISTO (K1+5) to
ISTO (K1+5)=1;
decrement entry
count by one

B-2-68

. 587

[

_ v -

‘Write Error
Message

““_‘:-—'V'/—_ |

Set Logic Switch |
| JOBLS to terminate
I simulation run |

=

558 %
/‘ -

———
5 Zero SERVRS
array

—_—

! Set NSCXH to M;
' total count of
storage changes to
.. perform

— t——

560 Read next cﬁange
card into ICARD., .
For EOF, go to 585}

. Vi
Increment NCARD
by 1 |

/ISZ . }.ox
LINECT LT ~ Yes 579
<:;:; same paggé ';‘\h—//

>

R . “No

B-2-69

P

RR .

Set LINECT =1;
output page
line count

& N
579 ;Write header -

ifor output)

iplge QT

Vi e wrong card.
type

ade,

:5&t ICHNG1 to 1;
flag for first
changg data card:

a

Frits ICARD

into BUFFER
array :
S U |
—_—
‘|Set BUFFER(1)

= NAMECH; &CH

for namelist rea?

——

A it e =
{Set BUFFER2 = IAND(BUFFER(2)

{MASK2) + BLANK2; blank out,
5th and 6th card charactdrs

e - -
/—-——-., J - . ’

Read with
namelist of CH
from BUFFER i

}
A
58
N
N —

B=-2-70

Ss

— P =

|

j Set IC= SAVEVALUE
CLKXH; current time
of 24 hour clock

. o
Calculate seconds
from current time to
next storage change.
Place in CHGXF -

— o = —_

-

99999
N

585

—— =

| Set CHGXF to 1,000,000
! delay final change beyond
: simulation run time

E
99999
99

—— e - ——————— — it |

Set J=11*(IVALUE(3)~1)
+1l; current contents
subscript

- e

jSet NEWCAP=IVALUE (4) ;
. GPSS value from MH7
| (M,1)

H
2]

B=-2-71

T

— A
Set NURCAP=NEWCAP |
=ISTO(J); subtract
current contents
from new capacity

— =

N\ Is :
_~~ NURCAP GE 0;
-~ , does capacity 3 592

<\\ exceed or equal ‘//" R

current 2

. contents ~

N/

Set ISTO(J+1)20;
set remaining
capacity to 0

.
-

99999
~—

Set ISTO(J+1)=NURCAP;
remaining capacity
set to NURCAP o

| Set SCLXH to 1;
flag for storage
lowering complete

s 'l
99999

B=2-72

CONCESSION

are there no

\\EESCESSiﬁﬁﬁ//'
. No
N

iSet NPTFM to
1 IVALUE(2) ;current
wlocation
'

! Set IFLT to
:IVALUE(3); flight
| table Iow no.

¥ 4
Set IGAT to MH1 :
(IFLT,9) ; gate
no. of flight

[\

Set T to 0; !

flag for lobby

conceggron —
\y

[Set I to MH9(IGAT| s
|4y ; number of VALUE (6) EONG;
lassociated secur- : is switch set
iity for gate concourse

Qncession

. jSet L to INDEXF(15)+1
subscript of first
concession in MH9

e

Set M to INDEXF(15)+

NOCONC; subscript of

last concession in MHY
o

Set IC to 0; count i
of concessions in |
right location .

&

B=-2=73

iSet J to L;]
{MH9 subscript of |

N —

|Increment IC by 1 Is -
|count of conce- A9 (3,4) EON;

Isions in right ', does concession
qugggion € Yes “.have the right seé%)

urity or is it -
by cunce;}iﬁg

“ No ;
. % ;
L] Y
‘Increment J by 1; :

-MH9_subscript '
~

Is \ |

J GT M; all\’ - |

concessions

tried

!

——— . S—

Set halfword para-
meter 5,to 0;

s
GT 0:any

time spent at) No ~ concessions .,
concession found at right
) : ELg
| location
L p

J L N

753 iSet IRN to MOD

Set halfword save- (IVALUE(4), (IC)+1;
‘value TRVXH to zero; bick random number
travel time | lbetween 1 and IC
i N
99999 Set IC to 0;
|count of
-concessions :

[set J\to L: :

IMH9 subscript of
first concession,

WA
P

B-2-74

: .

\
h'AT

Yo

= - R
MHY (T,4)EQ I
Increment IC by 1; does concession
count of concessions Yes have the riaght
at right location €~ - - security or is

"4& _lobby conces-
T . sien’
No
Is™
IC EQ IRN;
is number of .
\ ' concession the Yes

~..same as the
one ramdomly
oicked

I

Increment J by 1;
MH9 subscript
S q{\ .

~.

Is
.3 GT M alf“\,

—Nos concessions
tried
&
‘Yes
1
N

755 Set NTTO to MHO

{(3,3); get pt. no. €&
of concessions

"Assign 756 to NEXT;
return after walking
_time Egﬁggn&nation

-

950

B-2-75

756

~
Set ICl to IVALUE(S)
simulation clock tlme

—

¥
Set ITIM to MHl(IFLT 6)*
60~-ICl; no. of seconds
before flight

-t g oo — —————
\'g

_TVALUE (6) Set ITIM to ITIM-

> Yes 5 LEAVEL+60=LEAVEV™*
e ::2':8::’:2;’ ” IVALUE (4) /100060 ;
3 time spent at
J;No lobby concession

—

in seconds

-
Qﬁx'gggéﬁg\zﬁ__zaa_ _'Set ITIM to ITIM-
toncessi LEAVEC*60=~LEAVEV®
o TVALUE (4) /100060 ;
‘\r// time spent at
concourse con-
‘ cession in seconds
- I‘\SK Y
_~ITIM LT 0% Set ITIM to 0; .
linvalid time ™ Lno time spent at
alculated.- concession :
\\\\//,* = . |
— 7 A

Set halfword para-
meter 2 to NPTTO; =—
,point number

'Set halfword para-
meter 5 to ITIM; time
spent at concession i

e T——

'Set halfword para-
meter 7 to J; MHS
isubscript fcr chosen
iconcession i

T Set byte parameter -

.99999 <_“11 to 15; process

code for concession
\/ e — ———

B-2-76

CONCOURSE

Set NPTFM to
IVALUE (2); point o
number =

et IV3 to IVALUE
(3) 7 gate number

et ISEC to MH9 |
(IV3,4): security
acility number
or gate no. IV3

Set J to INDEXF
(3)+ISEC; MH9
row number for
security number
ISEC

Set NPTTO to MH9
(J,3): point ne.
for security
(concourse) no. J |

]Assigg 920 to NExT[

Assign NPTTO to
PH2; point number
of security
(concourse)

Assign ISEC to
PHE) number of
security
{concourse)

99999

B=-2-77

= LXIR
xo03 paubjysse
sey Yotym Idqunu A

jusuwajels oL 0Y afessau
q HMWHH@ ajytam

6Hd

ut xed 103 awyly
buyytem sayjetr
-nuno> aaes {gHJ4
03 LdWILI ubyssy

—_—,

xed 103 ewf3 bufy
=3jTem SATIeTUND
PUTI NXAMI+6HA

0} LAWILI 3I3S

I

- s3juyod
uasmM3aq Buwyly
Bupites teury if <
! (OLLAN ‘ ALdN)

anteaanes
piemjjey 385 156

NOILYINDTIVO HWIL ONIMIVM

3198

sax

~

punozy uaaq
§ey jutod pauyy
—Spun jeyy beyy
{T=MSOLdN 335

usaq Apes A
TN //hmn.UMAu Io11a mWMJ.. :Iﬁ\¢wv

9HHW O3 HXAYUL o /ﬁ/

T OF MSQLdN
. 85I

B=2=78

T

ERROR _ABEND

|
|

hrite Message
[ERROR END

Place logical
switch JOBLS

in set Position;
switch will - -halt
simulation when
program returns
to GPSS

B-2-79/B=2-80

APPENDIX B-3

LISTING OF FORTM SUBPROGRAM

B-3-1/B=3=-2

c
c
c

HELPC

LINKC ~=—= H ELPA FORTM

SUBROUTINE LINKC(IVALUE.ISAVEF,ISAVEH,IFAC,ISTO.FSTU.IQUE.
ITAB,FTAB,IUSE,IUSEF,FUSE,IMAX,IMAXB,IMAXH.IMAXBH,FSAVELOOOOSOOO

*FQUE, I LODG,

*, IMAXL , FMAXBL)
REAL*B FQUE, FUSE,FTAB

INTEGER#2
DIMENS ION

ISAVEH, IL0OG, IUSE, IMAXBH
IVALUE(G).ISAVEF(2),ISAVEH(2).!FAC(2),ISTO(2),FSTD(2)

-IOUE(z).FouE(z).xLoG(z),ITAa(z).FTAE(z),IUSE(z).IuSEF(z).Fuss(zi,
-xMAx(z).1MAxB(2).IMAxH(z).IMAst(z),FSAVEL(2;.1MAXL(2).FMAxaL(Z)

INTEGER PvAL

REAIL#8

INTEGER+*4
INTEGER=4
INTEGER~4
INTEGER*4
INTEGER=4

DUMB, ZAP , NAMERS)
TIME.BUFFFR.BLANK.ELANKT,FACTYP.TYPTST.ST&RT.FINISH
BLANK2,SCERVRS A
ERRORS,A:TRSK, FACQSX , FROMTO, FROM, TO
ENDXF.TRUXH.BDTxH,ABUXH.DBUXH,XFRXH.XFAXH,XFDXH,SCLXH
CLKXH.CHGXF.NSCXH.SLCXH.GRTXL.HHGXH.GRGKL.GHTOO.CPKXH

INTEGER*4 CGTXL, PCBXL, CRBXH, CONXH

INTEGER=4
INTEGER*4
INTEGFZR*4
INTEGER~4
INTEGER~2
INTEGER 2
INTEGER=2
INTEUCR*Y
INTEGER#2
INTEGER=2
INTEGER~2
INTEGRR«2
INTEGRR~2
INTEGER~2
INTEGE R 2
INTESER 2
INTEGER=2

CUSOS.RCRQS.CHKCS.DPCBS.EPCBS,SECQS.GAOSL.PQRQS.TICOS
RCkRo.BnGCD.DPLCO.CHEK2.CHEK3.CGTRO.ERRUR.SECUO,TRKQB
CTRLO,CTRL1

OPDPS,DPQCS,EPDPS,EPICS
IDUmi.FACND.POINT.PD[NTX.POINTY,IPARAM.NSDRTD.EXITPT
NDEPLC.NSECUR.NCUST.AGENCY.N!MMI,NP#RKL.AIRLIN.XY
ENTRPT.EXPCHK.BOARDT.thKT,BUSTUP,TRFLTI,TRFLTU
FLTHO.GC.OGM.CDM.INT.GﬁTE,FAX.BAG.DEFL!N
IEFSCK.LINES.E?CURB.DEFB&G.STD,CAP.ADD.DELETE.SC&LE
ﬂGE"TS.SIZE.UIST.NU,TWOH&Y.DOMDIR.CDMQIR.IMTDIR
GRARK(4) ,CURBQ(4),TPAX(3)

NPTCSW

PH.PF,PB,PL,LR, LS

NSNAR(20.2)/40+C/

ITITLE(Ga,5)
GPSTG{ZJ)}24-O/.GPQUE{24)/24*0/,GFHALF(24)/2400/
ENTHCT(24}/24-0/.CRCDN(24}/2400/

INTEGER+*2 T550U1[251/25‘0/.TSQUE(2S)/25'O/.TSHﬁLF(25)/25-O/

INTEGERYZ
INTEGER-2
INTEGER~2

FLOW, ITIRF,JENTCT,JCRCON, ISTRNG
dTHLF(241f?4~O/.ISECFL[?)/T-O/.[YCKFL{15)/15*0/
XENTCT,XCRCON, 1SHLF, JSECFL,JTCKFL

INTEGER2 TTFLON(16){16*OZ,TSFLDW(BI/B-0/

DIMENS ION
DIMENS [ON
DIMENS IONM

020001000
02002000
00003000
00004000

00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013¢00
0C014c00
00015¢000
00016000
00017000
00018000
00019000
00020000
00021¢00
€0022c00
00023000
000243000
eo0o02s5c00
00726000
0C027c00
00025¢00
aco29co00
00030C00
00031000
Q0032¢c00
€0032000
00C34000

- 00025000

0CN35000
0003600
00036200
00036700
00036700
00235500
00C36¢C0
00035700
0Cc037c000

BUFFER(21).ICAR3L20),FnCHO[4).FACTYP(ZO),IPARAM(3).XY(2)00038COO

NFACSM{20.2).!DUM1{24},INDEXF(20),NEGRTD(Z),LINES(B)
IEPSCH(1U.10],NLMER3{2OJ.CAP(15).XFRFLT(101).FACOSX(ZO)

DIMENSION AGENTS(dJ.Sl?Eld}.DUME{E}.FROMTU(2),LTEMPA(24)

DIMENS ION

ITEMPB(20)

DIMEMSIOUN SERVRS(30)

DATA NF#CSM,DEFLIN.DEFBAG.EDARDT.Z£P/43*O.20000000000000000/
DATA TRFLTI, TRFLTO,NC/2+0, 'NO' /

DATA ICHNG1 /0/,ITEMPA/24+0/

DATA PH,PF,PL.PB.LR,LS/‘PH‘,'PF'.‘PL'.'PB'.'LR','LS'/

DATA IRRRV.IDEPT.IDVER,IGRTR/‘ARRV','DEPT‘.‘SVER'.'GRTR’/
DATA IF&RM,IBUS.ISTDR.ITR&HS{'PARM'.'BUS/'.'STDR‘.'TRQN'/
DATA BLkNK,dDBTST.IﬁRLIN.IPRETI/' '.'UUBT'.'AIRL'.'%PRE'/
DATA fRUNT.!CHQN.ITISER/'RUNT‘.'CHAN‘.'TIME'/

DATA FACT?P/'GATE'.'CHEC‘.'SECU'.'BAGC'.'CUST','ENTR‘,'EXIT'.

'ENPL'.'XFER'.'PARK'.'RENT'.'DEPL‘,'IMMI','TICK‘.

003033c00
00042200
00041000
00041100
00042000
00043000
00044¢00
00045¢00
00046C00
00047000
00048000
00049c00
00050cC00
00051000
00052¢000
00053c00

(e XeXe Ky Xy!

QOO0

o000

aonn

DATA
DATA
DATA
DATA
DATA
DATA
DATA

L 2K BE SK]

DATA
DATA

THIS EQUIVALENCE PROVIDES A CONVENIENT WAY TO ZERQ OUT THE AREA OF

'CONC!' , 5! Y/

NAMEFL,NAMEGE ,NAMEGT ,NAMEND/' &FL',' &GE',' >',

'&END'/

NAMEST ,NAMEAL ,NAMET1,NAMEOV/' &ST',' &aAL',' &Tl',' gOvV'/

NAMEPA , NAMEBU ,NAMES ,NAMETR/' &PA',' &BU',' &S G

NAMECH, NAMETS/' &CH',' &TS'/

&TR'/

BLANK1® ,MASK1,ASTRSK/Z40000000,ZFF000000,25C000000/

BLANK2,MASK2/2404000C0,Z0000FFFF/

I1EPSCH/ 1.,2,3,4,5,6,7,8,9,10, 2,1,3,4,5,6,7,8,9,10,
372'4v1v51617v319!1°' 4'3v512-6v1l79879'1°1
5'4761307'2'8v1|9'1°' 6-597141813v912!1°'1n
7.6,8,5,9,4,10,3,2,1, 8,7,9,6,10,5,4,3,2,1,
9,8,10,7,6,5,4,3,2,1, 10,9,8,7,6,5,4,3,2,1/

LINSNP, LINSNX,NTLINS/2%50,0/

NAMERS/ 'GATE "+ 'CHECKIN ','SECURITY', 'BAGCLAIM',
'CUSTOMS ', 'ENTRANCE','EXIT ', 'ENPLCURB',
'TRANSFER', 'PARKING ', "RENTACAR', 'DEPLCURB',

[} *

'IMIGRAT', 'TICKETS&','CONCESSI',5+! i

MAIN MEMORY CONTAINING INPUT VALUES BEFORE READING EACH CARD.
EQUIVALENCE (Duma(1),IDUM1(1),FACNO(1),BAG,LINES(1),STO,ADD),
(IDUM1(2),CAP(1)), (IDUM1(3),FLTND),

LR SR JE BN BE X BE NY B A A)

THIS EQUIVALENCE OVERLAYS COCL.

(IDUM1(4),GATE),

(IDUM1(5),TIME,AGENTS(1),SIZE(1)),

(IDUM1(7),AC,CIST),
(IDUM1(9),INT,EXITPT),

(1DuM1{8),DOM),
(IDUM1(10),COM,ENTRPT),

(IDUM1t11),IPARAM(1).EPCURB.NDEPLC.NSECUR,NCUST,

AGENCY ,DELETE,AIRLIN,DOMDIR),

(IDUM1(12),PAX,EXPCHK,NIMMI,NPARKL.CGMDIR).
(IDUM1(13),8USTOP, INTDIR, TPAX(1)),

(IDUM1(14),PUINT),

(IDUM1(1S),POINTX,XY(1)), (IDUM1(16),POINTY),
(IDUM1(17),0PARK(1)), (IDUM1(21),CURBQ(1))

1 OF ®NFACSM*

FACILITY TYPE) WITH SCALARS WITH MORE INTELLIGABLE NAMES.
EXAMPLE: NFACSM(3,1) AND “NOSECU" BOTHM REFER TO THE NUMBER OF

ALRPORT SECURITY FACILITIES.

EQUIVALENCE (NFACSM(1,1),NOGATE),

LR BE BN BE BF 3N

(NFACSM(3,1) ,NDSECU),
(NFACSM(5,1) ,NOCUST),
(NFACSM(7,1),NOEXIT),
(NFACSM(9,1) ,NOTRAN),
(NFACSM(11,1) ,NORENT),
(NFACSM(13,1),NOIMMI),
(NFACSM(15,1),NOCONC),

(NFACSM(2,1) ,NOCHEC),
(NFACSM(4,1) ,NOBAGC),
(NFACSM(6,1) ,NOENTR),
(NFACSM(8,1),NOENPL),
(NFACSM(10,1),NOPARK),
(NFACSM(12,1) ,NODELP),
(NFACSM(14,1) ,NOTICK),
(NFACSM(1,2),INDEXF(1))

THIS EQUIVALENCE OVERLAYS FACQSX WITH THE BASE VALUES QF THE
QUEUES, STORAGES, ETC., ASSIGNED EACH FACILITY TYPE BY THE GPSS
COMPILER.

EQUIVALENCE (FACQSX(1),GAQSL),

* & % 8

THIS EQUIVALENCE ENABLES THE BUILT=IN SORT RQUTINE TO SORT MHS BY

(FACQSX(3),SECOS),
(FACQSX(8),EPCBS),

{FACQSX(11),RCRQS) ,
(FACQSX(13), IMMOS) ,

(FACQSX(2)s CHKQS),
(FACQSX(5),CUSQs),
(FACQSX(107),PARQS),
(FACQSX(12),DPCBS),
(FACQSX(14),TICQS)

FACILITY NUMBER BY FACILITY TYPE IN A SINGLE PASS.
EQUIVALENCE (NSORT,NSORTD(1))

(THE NUMBERS OF EACH

00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069C00
00070000
00071000
00071100
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00037000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000

(s N ¢] OGO000 0O0Q0

00000000

OOO0O0OOO0

o000

aon

THIS EQUIVALENCE OVERLAYS THE ARRAY ®FROMTC" WITH
*FROM® AND "TO". SEE OVERRIDE CARD.
EQUIVALENCE (FROMTO(1),FRCM), (FROMTO(2),TO)

THIS NAMELIST FOR “AIRLINE" CARDS.

NAMELIST/AL/LINES,

L EPCURSB,

- EXPCHK,

L4 BUSTOP

THIS NAMELIST FOR "BUS/LIMO* CARD.
NAMELIST/BU/ARVBUS,

" DEPBUS

THIS NAMELIST FOR "ARRV® AND "DEPT* (FLIGHT) CARDS.
REQUIRED: TIME, GATE, PAX.
FOR DEPARTING FLIGHTS; ARLIN OR DEFLIN.
FOR ARRIVING FLIGHTS; BAG OR DEFBAG.
SPECIFY MIDNIGHT AS 2400.
DEFAULTS: DOM=1,AIRLIN=DEFLIN,TPAXa20
BAG (CLAIM AREA) FOR ARRIVING FLIGHTS ONLY.
NAMELIST/FL/FLTNO,
AIRLIN,
TIME,
AC,
DOM, INT,COM,
GATE,
PAX,
TPAX,
BAG

L 2 X BN 3K 2 2R 2]

THIS NAMELIST FOR THE FOLLOWING FACILITY LOCATION CARDS:

“GATE" "CHECKIN" “SECURITY®
YBAGCLAIM" »CUSTOMS" “ENTRANCE®
"EXIT® “ENPLCURB" "XFER™
*PARKING" "*RENTACAR" “DEPLCURB*
*IMMICRAT ION® *7ICKETS&CHECKIN"

NARELIST/GE/FACND,

» AGENTS,SIZE, TWOWAY ,DPARK,CURBQ,

» IPARAM,

. NDEPLC,NSECUR,NCUST ,AGENCY,AIRLIN,

. NIMMI,NPARKL,

. POINT,

L XY,PQINTX,POINTY, ;

* EXITPT,

. ENTRPT

THIS NAMELIST FOR “"GRTRANSP" (GROUND TRANSPORTATION) CARD.

REAL VARIABLES: PVTCAR, SELF, CRENT, BUS, TAXI, CURB,
NAMELIST/GT/DOM,COM, INT,
PVTCAR,
CRENT,
BUS,
TAXI

& % # &

THIS NAMELIST FOR WALKING TIME "OVERRIDE" CARDS.
NAMELIST/0v/FROMTO,FROM, 10,

PARK

00114000
00115000
00116000
00117000
00118000
00119¢00
00120000
00121¢00
00122000
00123000
00124000
00125000
00126000
00127000
00125000
00129000
00130000
00131€00
0013200
00133000
00134000
00135000
00135000
00137000
00138000
00139000
0014000
00141000
00142000
00143¢00
00144c00
00145000
00146000
00147000
00148¢00
00149000
00150€00
00151000
00152000
0015300
00154000
00155¢00
00156000
0015700
00158¢00
00159000
00160000
00161000
00162000
00163000
00164060
00165000
00166000
00167c00
00168C00
0170000
00171000
00172€00
00173000
00174000
00175000

oOon

000

(¢ X2 Xy]

aon

000000

" TIME,DIST

THIS NAMELIST FOR "PARM® (PARAMETER) CARDS.
REAL VARIABLES: GREET, WWGATE, GRGATE, CIRCPK
DEFAULTS: BDARDT= 15 MIN., ERRORS = S0.
NAMELIST/PA/ERRORS,

BOARDT,

LEAVEL,

LEAVEC,

LEAVEYV,

GREET,

WWGATE,

GRGATE,

CURBCK,

CIRCPK,
CRBGT,
PRKCRB

3R AR NBEEBE N

THIS NAMELIST FOR “STORAGE" CARDS.
NAMELIST/S/STO,
* CAP

THIS NAMELIST FOR “INITIAL" CARD.

REAL VARIABLES: DSTFAC AND WALKSP ARE REAL VARIABLES.
DEFAULTS: SCALE=1, DSTFAC=1.1, WALKSP=1,0(METERS/SEC).

NAMELIST/ST/5TART,
FINISH,
DEFBAG,
DEFLIN,
DSTFacC,
SCALE,
WALKSP

LR BR 2R B 3

THIS NAMELIST FOR "%PRETICKETED" CARD.
NAMELTST/TI/DOM,

com,

INT,

DOMDIR,

COMDIR,

INTDIR

i & % & 8

THIS NAMELIST FOR “TRANSFER" (FLIGHT) CARD.
DEFAULTS: ADD=7200(120 MIN),DELETE=1800(30 MIN).
NAMELIST/TR/ADD,
. DELETE

THIS NAMELIST FOR "CHANGE" CARD.
NAMELIST/CH/TIME,
- SERVRS

THIS NAMELIST IS FOR ARRAYS SPECIFYING
STORAGE QUEUE AND HALF-WORD NUMBERS FOR
TIME SERIES READ-IN ON ‘TIME-SERIES' RECORD.

NAMELIST/TS/GPSTO,
» GPQUE,
" GPHALF

MH1(IR.IC):MHO1B+ICNHO1*1R+IC
MH2(IR,IC):MHO2B+ICNH02¥IR+IC

00176000
00177¢C00
00178000
00179000
00180000
0oigico0
001e2c00
00183000
00184000
00185000
00186000
00187000
00188¢c00
00188010
00189C00
00189100
00189200
00190¢00
00191000
00192000
00193¢c00
00194000
00195000
00196000
00197000
00198000
0C199¢00
00200c00
00201000
€0202c00
00203c00
0C204c00
00205¢00
00206000
00207600
00208000
00209000
00212c00
00211000
002i2cco
00213000
00214000
00215000
0C216¢00
0C217¢c00
00218000
00219¢00
00220000
00221¢c00
00222000
00222100
00222200
00222200
00222700
00222200
00222¢00
00222700
00222200
00222900
00223¢00
00224000

ano 0000 OO0

OOaA00O00O0 O00O0

o000

P

MH3(IR,IC)=MHO3B+ICNHO3=R+IC
MH4(IR,IC)=MHO4B+ICNHO4»IR+IC
MHS (IR)=MHOSB+IR+1
MHE6(IR,IC)=MHOGB+ICNHOG+1IR+IC
MH7 (IR, IC)=MHO7B+ICNHO7*1R+IC
MHB(IR, IC)=MHO8B+ICNHO8» IR+IC
MHS (IR, IC)=MHO9B+ICNHO9*1R+IC
MH11(IR)=zMH1 1B+IR+1
MH12(IR)=MH12B+IR+1
MH13(IR)=MH13B+IR+1
ML2(IR,IC)=MLO2B+ICNLC2+«1R+IC

RETURN

ENTRY FORTM(IVALUE)

IBRNCH=IVALUE(1)

GUTO(l '2'3.4'505.7'8'9|1°'11,12'13'14'15'16'17|1av19'2°0

- 21,22,23,24,25),1BRNCH

1 c o} N T I N

PERFORM LINKAGES.

COMPUTE MATRIX BASE ADDRESSES.

READ SIMULATION START AND END TIMES.
RETURN LENGTH OF RUN IN XHSENDXH.

el NPUT SECTION

WRITE(6,1005)
JOBT=0
LINECT =1
MAXPT=20
NCARD=0
NERCNT =0
NPTOSW=0
NGEOs=0
NCFXFR=0
NRCRSW=20
NROW=0
TRFLTI=0
TRFLTO=0
ITIME=1
BUFFER (21)aNAMEND

DEFAULT VALUES HERE

BOARDT =15
DSTFAC=1.1
ERRORS =50
SCALE=1

00225000
00225000
00227000
00228000
00229000
00230€00
00231000
00231100
00431200
00231200
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000
00243000
00234006
00245000
00245000
c0247C00
00248000
00249¢00
00250000
00251000
60252000
00253000
00254000
00255000
00255¢00
00257000
09258€00
£5259¢00
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269¢00
00270000
00271000
00272000
00272100
00273000
00271000
00275000
00275000
©0277000
00278C00
00279000
00280000
00281000

WALKSP=1.0
ADD=120
DELETE=30
ARVBUS = 0
DEPBUS = 0
START = 0
FINISH
FROM =
TO = 0
WWGATE
GRGATE
GREET=0.0
CURBCK=0.0
CIRCPK=0.0
CRBGT=0.0
PRKCRB=0.0

0

on

0.0
0.0

C LATEST TIME LEAVE LOBBY CONCESSION

LEAVEL = 15

C LATEST TIME LEAVE CONCOURSE CONCESSION

LEAVEC = 10

C SPREAD OF UNIFORM DISTRIBUTICN BEFORE ABOVE TIMES

c

c
c
c

117

DEFAULTS FOR ADDING, DELETING TRANSFER FLT FROM XFRFLT:

oL WN -

LEAVEV = 10

READ(5,1002) ICARD
NCARD=NCARD+1
IF(ICARD{1).NE.JOBTST)GOTC 111
JOBT =1

WRITE(6,1004)NCARD, ICARD
READ(5,1002) ICARD
NCARDaNCARD+1
WRITE(9,1002)ICARD
WRITE(6,1004)NCARD, ICARD
TYPTST=IAND(ICARD(1) ,MASK1)
IF(TYPTST.EQ.ASTRSK)GOTO 117
ICARD(1)=NAMEST
ICARD(2)=BLANK

CALL XCOULE(BUFFELR,B80)
WRITE(10,1002)1ICARD

CALL XCOOE(BUFFER,B84)
READ(10,ST)
IF(JOBT.EQ.1)GOTO 108

CALL MNLINK(1,ICNHO1,ICNHO2,ICNHO3, ICNHO4,ICNHO6, ICNHO7, ICNHOSE,

ICNHOS,
ICNLO2,

EPQCS, GRTO00,GRTXL,CPKXH,CRBXH,CGTXL,PCBXL,
JOBLS)

CALL CLINK2

ISAVEH (XFAXH) =ADD=*60

ISAVEH (XFDXH)=DELETE*60

ISAVEH(SCLXH)=5SCALE

MHO18=MHBASE (IMAXH, 1, ICNHO1)
MHO028=MHBASE (IMAXH, 2, ICNHG2)
MHO38=MHBASE (IMAXH, 3, ICNHO3)
MHO4B=MHBASE (IMAXH, 4, ICNHO4)

ENDXF,TRVXH,BDTXH, ABUXH, DBUXH, XFRXH , XFAXH, XFDXH, SCLXH,CLKXH,’
CUSQS,RCRQS,DPCBS, EPCBS, CHKQS,SECQS,GAQSL, PARQS , IMMQS, TICQS,
RCARO,BAGCO,DPLCO,CHEK2,CHEK3,CGTRO,ERROR, SECUO,CTRLO,CTRLY,
TRX99,CONXH,CHGXF ,NSCXH,SLCXH,DPDPS,DPQCS , wWGXH,GRGXL, EPOPS,

00282¢00
00283000
00284c00
00285000
00285000
00287c00
00288000
00289000
00290000
00291000
00292000
00292100
00292200
00292200
00292700
0029200
00293000
00294¢00
00295000
00295000
00297000
00298000
00299000
0030cc00
00301000
003c2¢00
00303¢c00
00304000
00305¢00
00306000
00307000
003C8000
00309¢00
00310000
00311000
00312000
00313c00
00314000
00315000
00316000
00317c00
00318¢00
00319c00
00320000
00321000
00322000
00323¢00
00324¢00
00325c00
00326¢00
00327c00
00328c00
00329ce0
00330c00
003310G0

2HRS., 30 MI0C332C00

00333¢00
00334¢00
00335000
00336000
00337000

¢
c
c

io8e

109

100

101
112

107

MHOS5B=MHBASE (IMAXI{,5,1)
MHOBB=MHuASE (IMAXH, 6, ICNHOG)
MHO7B=MHBASE (IMAXH, 7, ICNHG7)
MHOBB=MHBASE (IMAXH, B, ICNHCS)
MHO9B=MHBASE (IMAXH, 9, ICNHGY)
MH11B=MHBASE (IMAXH, 11,1)
MH1282MHBASE (IMAXH, 12,1)
MH13B=MHBASE (IMAXH,13,1)
MLO2B=MLBASE (IMAXL,2,ICNLG2)
GOTO 109

CALL MNLlNK(1.ICNH01.ICNHO4.ICNL02.CLKXH)
CALL CLINK2

MHO18=MHBASE (IMAXH, 1, ICNHO1)
MHO4B=MHEASE (IMAXH, 4, ICNHO4)
MLO2B=MLBASE (IMAXL,2,ICNLG2)

1SAVEH {CLKXH)=START
NILiHR=5TART/100
NSTHMIN=MUD(START,100)
NEMDHR=FINISH/100
NEMDIAN=MOD(FINISH, 100)
1F{NENDMN.GE .NSTMIN)GOTO 100
NENDIHR =NENDHR=-1

NENDMN =NENDMN+60

IF(UOBT.NE.1)ISAVEF(ENDXF)-SO*(50'(NENDHR-NSTHR)+NENDMN-NSTMIN)-1

GOTO 10t

DO 112 [=1,6

ouMB(1) = ZAP

TWOWAY =BLANK
READ(S,1002,END=99) ICARD
NCARD=NCARD+1
LINECT=LINECT+1
IF{LINECT.LT.51)GOTO 107
LINECT =1

WRITE(S,1005)
WRITE(E&,1004)NCARD, ICARD
IF(JOBT.EQ.1)WRITE(9,1002)ICARD
TYPTSTaIAND(ICARD(1),MASKT)
IF(TYRPTST.EQ.ASTR3K)GOTO 101

IF(ICARD(1j.EQ.IARRV.UR.ICARD(1).EO.IDEPT)GOTO 106

IF(ICARD(1).EQ.IGRTR)GOTU 180
IF(ICARD(1).EQ.ITISER) GO TO 120
IF(ICARD(1).EQ.IARLIN)GOTC 160
IF(ICARD(1).EQ.IPRETI)GOTO 188
IF(ICARD(1).EQ.IDVER)GOTOD 170
IF(ICARD(1),EQ.IPARM)GOTO 173
IF(ICARD(1).EQ.IBUS)GOTO 186
IF(ICARD(1).EQ.ISTOR)GATY 190
IF(ICARD(1),EQ.ITRANS)GOTS 195
IF(ICARD(1).EQ.IRUNT)GOTD 200
IF(ICARD(1).EQ.ICHAN)GATO 99

B0 102 I=21,20
IF(FACTYP(I).EQ.BLANK)GOTO 104
IF(FACTYP(I).EQ.ICARD(1))GQTO 215

102 CONTINUE

ERROR IN FLIGHT INPUT DATA.

00338200
00339000
00240000
00341000
00342000
00342100
00242200
00342200
0034300
00344000
00345000
00346000
00347000
00348000
00349c00
00350000
00351000
00352c00
00353000
00354000
00355C00
00356000
00357c00
00358¢00
00359000
00360¢00
00381000
00362100
00383000
00364000
00365¢00
€036Gc00
00257¢00
00358000
0C3€9000
0037000
00371000
00372c00
00373c00
00374000
09375000
00376000
00377000
00377100
00378000
00372000
00380000
ce231¢Co0
00332¢00
00333c00
00384c00
0C385000
00385000
00387000
00338c00
00388000
00390000
00381000
00392000
00393000
00394000

199 WRITE(6,1000)
CALL ASSIGN(1,1000,PH)
NERRSW=1
GOTO 101
c
c ERROR IN GEOMETRY INPUT DATA.
c

104 WRITE(6,1003)NCARD
NERRSW=1
CALL ASSIGN(1,1000,PH)
GOTO 1014

"CeeeFLIGHT SCHEDULE INPUT

106 CALL XCODE(BUFFER,B80)
WRITE(10,1002)1CARD
BUFFER (1)=NAMEFL
CALL XCOUE(BUFFER,84)
READ(10,FL)
NMROW=NROW+1
IF(GATE.EQ.0.0R.PAX.EQ.0.CR.TIME.EQ.0)GOTO 199
IF(ICARD(1).EQ.IARRV)GOTO 113
IF(DEFLIN.EQ.O.AND.AIRLIN.EQ.0)GOTO 199
IMAXBH (MH1 (NROW, 1)) =1
113 IMAXBH (MH1(NROW,2))=FLTNO
IF(AIRLIN.EQ.O)AIRLIN=DEFLIN
IMAXBH(MHT(NRDN.S})=AIRLIN
IMAXBH (MH1 (NROW,4))=TIME
NFLTHR=TIME/ 100
NFLTIMN=MOD(TIME, 100)
IF{NFLTMN.GE .NSTMIN)GOTO 103
NFLTIHR=NFLTHR=1
NFLTMN=NFLTMN+50
103 IMAXBH(MH1(NROW,G))=60-(NFLTHR-NSTHR)+NFLTMN-N§TMIN
IF(INT.NE.1)GOTO 105
IMAXBH (MH1(NROW,7))=3
GOTQ 115
105 IF(COM.NE.1)GOTO 110
IMAXBH (MH1 (NROW,7)) =2
GOTO 115
110 IMAXBH (MH1(NROW,7))=1
115 IMAXBH (MH1(NROW,8))=AC
IMAXBH (MH1 (NROW,9)) =GATE
IF(BAG.EQ.0.AND.ICARD(1).EQ.IARRV)BAG=DEFBAG
IF(ICARD(1).EQ.IARRV.AND.BAG.EQ.0)GOTO 199
IMAXBH (MH1 (NROW, 12)) =BAG
PAX = PAX=TPAX(1)~TPAX(2)=-TPAX(3)
IF(SCALE.EQ.1)GOTO 114 ,
IMAXBH (MH1 (NROW,10)) =PAX/SCALE+0.51
IMAXBH (MH1 (NROW, 11))=TPAX(1)/SCALE+0.51
IMAXBH (MH1 (NRUW,13))=TPAX(2)/SCALE+0.51
IMAXBH (MH1 (NROW,16))aTPAX(3)/SCALE+0.51 ’
GOTQ 101
114 IMAXBH (MH1 (NROW,10)) =PAX
IMAXBH (MH1 (NROW,11))=TPAX (1)
IMAXBH (MH1 (NROW,13))=TPAX(2)
IMAXBH (MH1 (NROW,16))=TPAX(3)
GOTO to01
c
CeeuT I ME SERIES SPECIFICATIONS
¢ .

00395000
00396000
00397000
00398000
00399¢00
00400c¢c00
00401000
00402000
00403000
00404000
00405c00
00406000
00407000
00408C00
00409200
go410c00
00411000
00412000
00413¢c00
00414000
00415000
00416000
00417000
00418000
00419000
00420000
00421000
00422000
00423000
00424000
0042500
00426000
00427200
00428000
00429000
00430000
00431000
00432c00
00433c00
00434¢00
00435000
00436000
00437000
00438000
00439c00
00440000
00441000
00442000
00443¢00
00444000
00445000
00446000
00447000
00448c00
00449000
00450000
00451000
00452000
00452020
00452040
00452060

B-3-10

c TIME SERIES ENTITY SPECIFICATION PLACES NEMBERS 0452089
c OF STORAGES, QUEUES AND HALF-WORDS IN GP5TO, GPQUE 00452100
c AND GPHALF ARRAYS FOR TIME-SERIES READOUTS. 00452120
c 00452140
120 ICARD(1)=NAMETS 00452160
ICARD(2)=BLANK 00452180
ICARD(3)=IAND(ICARD(3),MASK2)+BLANK2 00452200

CALL XCODE(BUFFER,80) 00452240
WRITE(10,1€02) ICARD 00452260

CALL XCODE(BUFFER,B84) 004527280
READ(10,TS) 0Cas52200

GO TO 104 00452020

c 00452240
C 00453¢C0O
C...AIRLINE DATA INPUT . . 00454¢00
c 00455000
160 IF(JODT.E0Q.1)GOTO 101 . 00456000
I1CARD(t)=NAMEAL 00457000
ICARD(2)=BLANK 00458060

CALL XCODE(BUFFER,80) 0459000
WRITE(10,1002)1CARD 00480000

CALL XCODE(BUFFER,B84) 00461c00
READ(19,AL) 0C462¢00

DO 163 I=1,8 00463000
J=LINES(1) 004€4000
IF(J.EQ.0)GOTO 101 00155000
IMAXBH(MH2(J,1))=EPCURB 0046600
IMAXBH(MH2(J,2))aEXPCHK=10 00457¢00

TiMA XBH{MH2(J,3)) =BUSTOP 00468000

163 CONTINUE 00469000
GOTO 101 00470Cc00

c 02471000
C...GROUND TRANSPORT INPUT 00472000
c 00473c00
180 PVTCAR=0.0 . 00474000
CRENT=0.0 €0476000
BUS<0.0 00477000
TAYI=0.0 0r478c00
ICARD(1)=NAMEGT 02479¢00
ICARD(2)=BLANK 00450000

CALL XCOULE(BUFFER,80) 00481009
WRITE(:10,1002)ICARD 00482¢00

CALL XCODE(BUFFER,84) i G0d483c00
READ(10,GT) 00484000
PVTCAR=FVTCAR/100. ’ 00485000
CRENT=CRENT/100. go4ag7cco
BUS=8US/100, 00483c00
TAXI=TAX1/100. , 0048s0C0
IF(DOM.NE.1)GOTO 181 00490c00

I=1 00491000

GOTO 183 00492000

181 IF(COM.NE.1)GNTO 182 ' 00433000
I=2 004394cG0

GOTO 183 00495000

182 1=3 . 00496C00
183 IF(JOBT.EQ.1)GOTY 184 00487000

c NORMAL MODE - DEPL PAX LOGIC 0498000
c ML2(1=-3,2-%) A CUM PROB DIST WITH PYT CAR ELIMINATED 004899¢00
TEMPCT = 1.0 = PVTCAR 00500000
FMAXBL{ML2(I,1)) = FVTCAR 00501000

c ‘ 00502000

B=-3-11

TEMP2 = CRENT/TEMPCT

FMAXBL (ML2(I,2))=TEMP2

TEMP2=TEMP2+BUS/TEMPCT

FMAXBL (ML2(1,3))=TEMP2

FMAXBL (ML2(I,4))=1.0
GOTO 101 -

c USED 8Y SATELITE PROGRAM WHEN CREATING ENPL PAX JOBTAPE

184 FMAXBL (ML2(1,1))=PVTCAR

C.. 0%
c
188

c.llw
170

171

C..eP
173

C...B
186

TEMP2=PVTCAR+CRENT
FMAXBL (ML2(I,2))=TEMP2
TEMP2=TEMP2+BUS

FMAXBL (ML2(1,3))=TEMP2
FMAXBL (ML2(I,4))=1.0
GOTO 101

PRETICKETED

ICARD(1)=NAMETI
ICARD(2)=BLANK
ICARD(3)=BLANK

CALL XCODE(BUFFER,80)
WRITE(10,1002)ICARD
CALL XCODE(BUFFER,84)
READ(10,TI)

IMAXBH (MH4(1,1))=DOM«10
IMAXBH (MHA(2,1))=2COM%10
IMAXBH (MH4(3,1))=INT#=10

PAX INPUT

I1F(DOMDIR.GT.0.AND.DOM.G1.0) IMAXBH(MH4(1,2))=DOMDIR*10
IF(COMDIR.GT.0.AND.COM.GT.0) IMAXBH(MH4(2,2))=COMDIR*10
IF(INTDIR.GT.0.AND. INT.G1.0) IMAXBH(MH4(3,2))=INTDIR=10

GOTO 101

ALKING TIME/DIST OVERRIDE INPUT

IF(JDBT.EQ.1)GOTO 101
ICARD(1)=NAMEOV
ICARD(2)=BLANK

CALL XCODE(BUFFER,80)
WRITE(10,1002)ICARD
CALL XCODE(BUFFER,84)
READ(10,0V)
IF(TIME.GT.0)GOTD 171
TIME=DIST/WALKSP

IMAXBH (MH6 (FROM, TO))=TIME
IMAXBH (MH6(TO,FROM))=TIME

GOTO 101

ARM CARDS INPUT

JF(JOBT.EQ.1)GOTO 101
ICARD(1)=NAMEPA

CALL XCOUE(BUFFER,80)
WRITE(10,1002) ICARD
CALL XCOUE(BUFFER,B84)
READ(10,PA)

GOTO 101

US SCHEDULE

IF(JOBT.EQ.1)GOTO 1014
TCARD(1)=NAMEBU

INPUT

00503000
00504000
00505¢000
00506000
00507¢c00
00508c00
00509000
00510000
00511000
00512000
00513c00
00514000
00517000
00518000
00519000
00520000
00521000
00522000
00523000
00524000
00525000
00526000
00527¢00
00528000
00529000
00530000
00531000
00532c00
00833000
00534000
00535000
0053600
00537000
00538000
00532c00
00540000
00541000
00542000
00543000
00544000
00545000
00546C00
00547000
00548000
€0549¢00
00S59c00
00551000
00552000
00553000
00554000
00355¢00
00556000
00557000
00558000
005590900
00560000
00561000
00562¢00
00563000
00564000
00565000

B-3-12

ICARD(2)=BLANK

CALL XCODE(BUFFER,80)
WRITE(10,1002)ICARD

CALL XCODE(BUFFER,84)
READ(10,8U)

ISAVEH (ABUXH) =60.%ARVBUS
ISAVEH (DBUXH) =60.sDEPBUS
GOTO 101

C...G PSS STORAGE CAPACITY INPUT

190 IF(JORBRT.EQ.1)GOTO 101
ICARD(1)=NAMES
ICARD(2)=BLANK
CALL XCODE(BUFFER,30)
WRITE(10,1002)ICARD
CALL XCODE(BUFFER,84)
READ(10,S)

DO 191 I=1,15
IF(CAP(I).EQ.D0)GOTO 101
ISTO(11»(STO+I=2)+2)=CAP(I)

199 CONT I NUE
GOTO 101

C...TRANSFER FLIGHT OVERRIDES

195 1F(JOBT.ED.1)GOTO 101
ICARD(1)=NAMETR
ICARD(2)=BLANK
CALL XCODE(BUFFER,80)
WRITE(10,1002)ICARD -
CALL XCOUE{BUFFER,84)
READ(10,TR)
IF{ADD.GT.0) ISAVEM(XFAXH)=ADD+ 60
IF(DELETE.GT.0)ISAVEH(XFDXH)=DELETE»60
GOTO 101

C...RUNTIT L E CARD INPUT
c-

c

200 IF(UDBT.ED.1)GOTD 101
IF(NTLINS.LT.5)GOTO 201
WRITE(6,1080)

GOTO 101

201 NTLINS=NTLINS+1
CALL XCOUE(BUFFER,80)
WRITE(10,1002)ICARD
CALL XCODE(BUFFER,B80)
READ(10,1081) (ITITLE(I,NTLINS),121,64)

GOTO 101

C...GCEOMETRY INPUIT :

c
~

c

218 IF(JOBT.€0.1)GOTO 101

SET J = ENTITY RANGE FOR FAC. TYPE =1, ISTO(N=1) ACCOUNTS FDR 2ND

J=FACQSX(I)-2
NOFAC=1
ICARD(1)=NAMEGE
TYPTST=IAND(ICARD(2),MASK1)
IF{TYPTST.NE.BLANK1)ICARD(2)=BLANK

CHECK FOR "IMMIGRATION® & "TICKETS&CHECKIN®
IF(NOFAC.EQ.13.0R.NOFAC.EQ.14) ICARD(3)=BLANK

INPUT

00566000
00567009
00568000
0056900
00570000
Q057100¢C
00572000
00573000
00574000
00575000
00576000
00577000
€0573¢00
00573000
00530cC00
0Ccs81000
005E2000
00583000
00584¢00
¢05885000
00586000
00587000
0053yc00
00589000
005390000
00591000
09592¢00
00593¢00
00594c00
00595000
00596000
00Se7T0C0
00593000
00599000
00600C00
0601000
00602000
00603000
0060400
00605000
0C606C00
0C507000
Q0608000
00609000
00610000
00611000
00612000
00613000
00614000
00615¢c00
00616000
00617000
00618000
00619000
00520000
00621¢00
00622000
00623C00
00624000
00825000
00626000

B=-3-13

c

IF(NOFAC.EQ. 14) ICARD(4)2BLANK

IF (NOFAC.EQ.15) ICARD(3) = IAND(ICARD(3),MASK2)+BLANK2
CALL XCOUE(BUFFER,B80)

WRITE(10,1002)ICARD

CALL XCOUDE(BUFFER,B84)

READ(10,GE)

IF(NERRSW.EQ.1)GOTO 101

ARGUMENTS TD FUNCTION MH3 MUST BE Ts4,

I=POINT

IF(PUINTX.NE-0)1MAXBH(MH3(I,1))=POINTX
IF(POINTY.NE.O)IMAXBH(MH3(I.2))=POINTY
IF(EXITPT.GT.0)IMAXBH(MH3(1,3))=EXITPT
IF(ENTRPT.GT.O)IMAXBH(MH3(1,4))=ENTRPT

DO 225 1=1.4
IF(FACNO(I).EQ.0)GOTQ 227
NGEO=NGEQ +1
NFACSM(NOFAC,1)=NFACSM(NOFAC,1)+1
IMAXBH(MHO(NGEQ, 1))=NOFAC
IMAXBH(MHO(NGED,2))=FACNO(])
IMAXBH(MH9(NGED,3))=POUINT
IF(POINT.GT.MAXPT)MAXPT=POINT
IF(SIZE(I).EQ.0)GOTO 220
K=t 1=(J+FACNO(]I))+2
ISTO(K)=SIZE(1I)

220 IF (NOFAC.NE.8) GO TO 221

C ENPLANING CURB SPECIAL TREATMENT

ISTO(K) = S1ZFr!1)/SCALE+0.5
IF (ISTO(K).EQ.0) ISTO(K) = 1
K = 11«(EPDPS+FACNO(I)=2)+2
ISTO(K) = DPARK(I)/SCALE+0.5
IF (ISTO(K).EQ.0) ISTO(K) = 1.
K = 11#(EPOCS+FACNO(I)}-2)+2 .
ISTO(K) = CURBQ(I)/SCALE+0.5
IF (ISTO(K).EQ.0) ISTO(K) = 1
GO TO 222

221 IF (NOFAC.NE.12) GO TO 222

C DEPLANING CURB SPECIAL TREATMENT

c

c
c

ISTO(K) = SIZE(1)/SCALE+C.5
IF (ISTO(K).EQ.0) ISTO(K) = 1)
K = 11+(DPDPS+FACNO(])=2)+2 !
ISTO(K) = DPARK(I)/SCALE+0.5
IF (ISTO(K).EQ.0) ISTO(K) = 1
K = 11=(DPQCS+FACNO(I)=-2)+2
ISTO(K) = CURBQ(I)/SCALE+0.5
IF (ISTO(K).EQ.0) ISTO(K) = 1

222 DO 223 m=1,3

IF(IPARAM(M).EQ.0)GOTO 225
L=M+3
IMAXBH (MH9(NGEO, L)) =IPARAM(M) R

223 CONTINUE
25 CONTINUE

CHECK FOR SIDE BY SIDE ENTRANCE/EXIT

227 IF{NOFAC.NE.&.AND,NOFAC.NE.7.0R.TWOWAY.EQ.NO)GOTO 101

TWOWAY =NO
I=13-NQFAC
GOTO 215

99 IF(NERRSW.EQ.1)S0TO0 9 9 9 9 9

00627000
00625000
00629000
00530000
00631000
00632000
00633000
00634000
00635000
00636000
00637000
00638€00
00639000
0040000
00641000
00642000
00643000
00644000
00645000
00646000
00647000
00648000
00649000
00650000
00651000
00652¢c00
00653000
00654000
00655000
00656000
00657000
00658000
00659000
00660000
00661000
00662c00
00683C00
00664000
00665000
00666000
00£67000
00€68€¢00
0066900
00670c00
00671000
00672000
00673cC00
00674000
00675c00
00676000
Q0677¢c00
00678¢C00
00879000
00630C00
00681000
00682000
00683000
00684000
00685000
006386000
0oe87c00

B-3-14

c SORT FLIGHT SCHEDULE ON COL 6.
c

K=NROW=1
DO 230 J=1,K
NTEST=IMAXSH{MH1(J,8))
IF(NTEST.EQ.0)GOTOD 230
DO 229 I=u,NROW
NTIME=1MAXBH(MHI (1 ,€))
IF(NTIME.EQ.0.0OR.NTIME.GE.NTEST)GOTO 229
NTEST=NTIME
DO 228 L=1,ICNHOY
ITEMP1=IMAXBH(MH1(J,L))
IMAXBR(MH1 (J,L))=IMAXBH(MHI(I,L))
IMAXBH(MH1(I,L))=ITEMP1
228 CONTINUE
229 CONTINUE
230 CONTINUE

c
c MARK COL 1 FOR PAST LAST FLIGHT.
c
IMAXBH (MH1 (NROW+1,1)) a=1q
IF(JOBT.EQ.1)GOTD 299
c
C. SORT BY FACILITY NUMBER, THEN FACILITY TYPE.
c

NSWTC130
251 K=NGED-1
00 260 J=1,K
NTEST=2147483647
DO 255 1=J,NGEO
NSORTD(1)=IMAXBH(MHI(I,1))
NSURTD(2)=IMAXSH(MHI(I,2))
IF(NSQRT.GE.NTEST)GOTO 255
NTEST=NSORT
MINROW=1
255 CONTLINUYE
IF(MINROW.EQ.J)GOTO 260
DO 254 M=1,6 .
ITEMP1=MH9(MINRON,M)
ITEMP2=MHI(J, M) - ;
ITEMP3 =IMAXBH(1TEMP1)
IMAXBH (1TEMP1)=IMAXEH(ITENP2)
IMAXBH (ITEMP2)=ITEMP3
2549 CONTIMNUE
260 CONTIMNUE
265 IF(NSWTC1.EQ.1)GOTO 290
ITEMP1=0
DO 280 1=1,20"
IF(FACTYP(I).EQ.BLANK)GOTD 295
IF(NFACSM(I,1).LQ.0)GUTD 280 2
ITEMP1=ITEMP1+NFACSM(1,1)
IF(IMAXBH(MHQ(ITEMP1,2)).EQ.NFACSM(I.1))GOTG 280
NSWTC1=1
ITEMP2=ITEMP1=NFACSM(1,1)+1
ITEMP3=20
DO 270 J=ITEMP2,ITEMP1
268 ITEMP3=ITEMP3+1
c CHECK FOR DQUBLY DEFINED FACILITY
1F(IMAXBH(MHS(J,2)).LT.ITEMP3)GOTO 269
IF(IMAXBH(MH9(J,2)).EQ.ITEMP3)GOTO 270
c BUILD DUMMY FACILITIES

00s880C0
00682000
00830000
00691000
00622000
00693¢00
00634000
00695000
00696000
00697c00
00698000
00699000
00700000
€0701000
00702000
00703000
00704000
00705000
0Cc706000
00707000
00708000
00709000
00710000
G0711000
00712000
00713000
00714000
00715000
00716000
00717000
0C718000
00719000
Q0720c090
0C721000
00722000
00723000
00724000
00725000
0072Gc00
00727c00
00728c00
0723000
00730C00
00731000
00732000
00733000
C0734000
00735000
00736000
00737000
00738000
007Z3c00
30740000
00741000
00742000
00743000
00744000
00745000
00746000
00747000
00748000

B-3-15

(2 Xz N el

OO0

ao0oo0n

NGED=NGEO+1
IMAXSH (MHY (NGEOD, 1)) =1
IMAXBH (MHO (NGEQ,2))=ITEMP3
NFACSM(I,1)=NFACSM(I,1)+1
GOTOD 268
269 K2 IMAXBH({MHO(JU,2))
WRITE(6,1031)NAMERS,
CALL ASSIGN(1,1000,PH)
GOTO 9 9 9 9 9
270 CONTINUE
280 CONTINUE
295 IF(NSWTC1.EQ.1)GOTOD 251

INDEXF(*) (NFACSM(#+,2) + NO OF FAC IN THAT TYPE POINTS TO FAC

290 NFACSM(1,2)a0
IMAXBH (MHB(1,1))=NFACSM(1,1)
DO 296 122,20
Jxl=1
NFATSM(T,2)=NFACSM(J, 1)+NFACSM(J,2)
IMAXBH(MHB(I,1))=NFACSM(I,1)
IMAXBH(MHB(1,2))=NFACSM(I,2)
296 CONT I NUE

POINT-TO=-POINT WALKING TIME CALCULATION

WRITE(6,1024)
DO 293 I=1,MAXPT
X1= IMAXBH (MH3(1,1))
Y1=IMAXSH (MH3(1,2))
IF(X1.FQ.0.0.AND.Y1.EQ.D.0)WRITE(6,1025)1
TEST FOR POINTX, POINTY BOTH 0 ===> PROBABLY NOT DEFINED.
DO 292 =1 ,MAXPT .
IF(1.£Q.J)GOTO 292
K=MHE(1,J)
IF(IMAXBH(K).GT.0)GOTO 292
X2=1MAXBH(MH3(J,1))
Y2=IMAXBH(MH3(J,2))
ITEMP1=SQRT((X1=X2)*#24(Y1=Y2)*«2)»DSTFAC/WALKSP
IMAXBH(K)aITEMPY .
IMAXBH(MHG(J,1))=1TEMPY
292 CONTINUE
293 CONTINUE

DETERMINE CLOSEST EXIT & ENTRANCE TO EACH PQINT.

I=INDEXF(7)
J=I+NOEXIT
NCOL=3
294 I=I+1
DO 298 K=1,MAXPT .
IF(IMAXBH (MH3(K,NCOL)).NE.0)GOTO 298
ITEMP1=9999
DO 297 L=1I,J
ITEMP4=IMAXBH(MHI(L,3))
ITEMP2=IMAXBH(MHG(ITEMPS ,K))
IF(ITEMP2.GE.ITEMP1)GOTO 297
ITEMF1=ITEMP2
. ITEMP3=z1TEMP4
297 CONTINUTE
IMAXBH(MH3(K,NCOL))=1TEMP3

00749c00
00750000
00751000
00752060
00753000
00754000
00755000
00756000
00757¢c00
00758000
00759000
00760000
00761000
IN FAC00762000
00763000
00764c¢C0
00765¢00
00766000
00767000
00768000
00789000
00770¢00
00771000
00772000
00773¢00
00774000
00775¢00
00776C00
00777c00
00778C00
00779000
00780000
00781000
00732c00
00783000
00784000
00785000
00786C00
00787000
00788000
00789c00
00790¢€00
00791000
00792000
00793c00
00794000
00725000
00796c0C0
00797000
00798c00
00799¢00
0osoocoo0
00801c00
00B02c00
gQog8o3c00
0080400
008935000
00806C00
00807000
00808000
00809000

B-3-16

oan

c

CHECK FOR UNDEFINED FACILITIES ~ NOT NECESSARILY AN ERROR CONDITION.

291

28BS
286

284
287
288
289

CUNTINUE
IF(NCOL.EQ.4)GOTO 291
NCOL=4

I=INDEXF(6)
J=I+NOENTR

GOTO 294

NSWTC1 =0

DO 285 1=1,20
lF(FALTYP(I) EQ.BLANK)GOTO 286
IFINFACSM(1,1).GT.0)GUTO 285
NSWTC1=1

CONTINUE

IF(NSWTC1.EQ.0)GOTO 289

WRITE(5,1020)

0O 287 [=1,20
IF(FACTYP(I).EQ.BLANK)GOTO 288
IF(NFACSM(1,1).GT.0)GOTO 267
IF(1.NE.14)GOTO 283
WRITE(6,1026)

GOro 287
IF(I1.NE.13)GOTO 284
WRITE(6,1030)

GOTO 287

WRITE(S, 1021)NAMER8(I)

CONTINUE

WRITE(6,1022)

COMTINUE

C PARAMETER INPUT VALUES PLACED IN GPSS PROGRAM
c

o0o0o0on

c
c
c

c
c
c
c
c
c
c

ISAVEH (BUTXH)=60%BUARDT

LEAVEL = 80sLEAVEL

LEAVEC = GOsLEAVEC

LEAVEV = 60+ LEAVEV

ISAVEH (WWGXH) = 10.+WWGATE+0.5
FSAVEL (GKGXL) = GRGATE/100C.
FSAVEL (CGTXL)=CREGT-/100.
FSAVEL (PCBXL)=PRKCRB/1C0.
FSAVEL{GRTXL) = GREET/i00.
ISAVEH (CPKXH) = 10.+CIRCPK+0.5
ISAVEH(CRBXH) = 10.%CURBCK+0.5

MESSAGE - E N D OF INPUT DATA

299

WRITE(6,1006)
GOTO 9 999 9

c e} N T I N u
AGGAGE UNLOAD ROUTINE

SCANS MH7, BUILT BY SUCCESSIVE CALLS TO "BAGS" BY PAX XACS.
SUCCESSIVF PB'S WITH NUMBER TO BE COMPARED WITH MAX RANDOM
NUMBER OF PASSENGERS ON FLIGHT USER CHAIN.

ROUTINE WILL LOop

LOADS

00810000
00811000
GCH12000
00813000
00814000
00815000
00816C00
00817000
00818000
00819000
02820000
00821000
00822000
00822000
00824200
00825000
00826C00
00827000
00828000
00829000
00830060
0083000
00€32000
C0833¢00
00834000
00835000
00836000
00837000
00938000
00839000
00840C00
00340100
00841000
00842000
00843000
00244000
00845000
00846000
00847000
00847100
00847700
00848¢00
00843000
00842c10
00850000
C0851000
00852000
00853¢00
2CB54000
c0855C00
00856000
00357000
00858000
09859c00
00860000
00851000
008G2000
00863000
00864C00
00855000
008£6000

B=3-17

0000000

000000 OO0

oO0O0O0O0O0

THROUGH LDGIC CONTAINING A TIME DELAY, UNLINKING ALL PASSENGERS

WITH MAX RANDOM NUMBERS LE SUCCESSIVE PB* VALUES.

MH7(2.1)=MH7(2,1)+MH7(1,1)
MH7(3,1)=MH7(3.1)+MH7(2,1)
ETC.

MAXBAG=IVALUE(2)

NTEST=M*XBAG

NOPB=40

NENDCK =0

ITEMP1 =MHO7B+1

DO 305 I=1,63
ITEMP1=ITEMP1+1
ITEMP2=1TEMP1+1
NOBAGS=1MAXBH(ITEMP1)
IMAXBH({ITEMP:)=0
IF(NENDCK.EQ.0.)NENDCK=NOBAGS
IMAXBH(ITEMP2)=IMAXBH (ITEMP 2)+NOBAGS
IF(IMAXBH(ITEMP2).LT.NTEST)GOTO 305
CALL ASSIGN(NQPB,I+1,PB)
NENDCK=0 -
IF (NOPB.EQ.1) GO TO 306
NOPB=NOPB=-1
NTEST=NTEST+MAXBAG

S CONTINUE
IMAXBH (ITEMP2)=0
IF(NENDCK.EQ.0)GOTO 9 9 9 9 9
306 CALL ASSIGN(NOPB,64,PB)
GOTO 9 999 9

[A]

c 0 N T I N y E
««eBAGCLATLIM

IVALUE(2) = CURRENT LOCATION
IVALUE(3) = PH1 (MH1 ROW NO)

NPTFM= IVALUE(2)
Iv3=IVALUE(3)
d=INDEXF(4)+IMAXBH(MH1(IV3.12))
NPTTQ=IMAXBH (MH9(J,3))
ASSIGN 309 TO NEXT
GOTO 850

309 CALL ASSIGN(2,NPTTO,PH, 11,4,PB, 7,J,PH)
GOTO 9 9 99 9

4 c o N T I N u E

«+.CUSTOMS
IVALUE(2) = CURRENT LOCATION

00867000
00868000
00869000
00870000
00871000
00872¢00
00873000
00874000
00875000
00876000
00877000
00878000
00879000
00880000
00881000
00882000
00883000
00884000
00885000
00886000
00887000
00888000
00589000
00890000
00891000
00892000
00893000
00894000
00895000
00896000
00897000
00898000
00899000
00200000
00901000
00902c00
00903000
00904000
00505000
0090600
00907000
€0908090
00909000
00910000
0091100
00912000
00913000
00914000
00915¢00
0091600
00917¢00
0c918C00
00919000
00920000

IVALUE(3) = MM9 ROW NO OF APPROPRIATE IMMIGRATION FAC00921000

NPTFM=IVALUE (2)
IV3=IVALUE(3)
CUSTOMS AREA ASSOCIATED WITH IMMIGRATION AREA PAX AT
L=IMAXBH(MHY (IV3,4))
JaINDEXF(5)+L

00922¢00
00923c00
00924000
00925¢00
00926000
00827000

B-3=18

NPTTO=IMAXBH (MHO(J,3))

00928c00

ASSIGN 313 TO NEXT 00929000

GOTO 950 00930000

C DETERMINE CUSTOMS QUEUE AND STORAGE NUMBER 00231000
313 M=CUSQS+L-1 00232000
CALL ASSIGN(2,NPTTO,PH, 5,M,PH, 7,J,PH, 11,5,PB) 00933000

c 00934000
GOTO 9 9 9 9 9 00935000

c 00936000
c 00937000
s c 5] N T 1 N U E 00933000

c 00239000
cC...GROUND TRANSPORT MODE 009240000
¢ . 00931000
c IVALUE(2) = PAX BEING MET (DEPL PAX; DECR TO 0 BY ROUO0942000
c = RANDOM NO FOR TICKETED/NOT SELECTION FOR J00943000
(4 IVALUE(3) = RANDOM NQ FOR MODE SELSCTION 009443000
c IVALUE(4) = FLT TYPE (1,2,3 = DOM,COM, INT) 00945000
¢ 00246000
IV2=IVALUE(2) 00947000
IV4=IVALUE(4) 00948000
1F{JOBT.EQ.1)GOTO 702 00949000

K =2 00950000

L=0 00951000

GQ To 701 00952000

€C PAX NOT BEING MET; RANDOM MODE SELECTION 00953000
702 K=1 00954000
L=0 00955000

C DECISION ON TICKETED/NOT TI1CKETED 00956C00
IF(IMAXBH(MHA(IVE,1)).,LT.IV2)L=t 00957¢00

701 TEMPCT=(IVALUE(3)+1.)/1000. 06358000
DO 705 J=K,|0 00959000
IF(TEMPCT.GT.FMAXBL(ML2(1IV4,J)))GOTO 705 0096V000

€ ADD (+1) TO J BECAUSE PVT,.CAR PASS. GROUPS USE PB6=1 AND P5G=2 00960100
NEDER] ' 00966200

CALL ASSIGN(6,J,PB, 9,L,PB) 00961000

GOTO 99 9 9 9 00962000

75 CONTINUE 00953000
NERCNT =NERCNT+1 00964c00
IF(NERCNT.EQ.ERRORS)GOTO 999 00965000
WRITE(6,1007) 00966C00

CALL ASSIGN(6,4,pPB, 9,L,PB) 00967¢00

GOTO 8 99 9 9 00968000

c 00269000
c 00970¢00
8 c o N T I N u E 00971000

c 00972000
C...RENTACAR ' 00973¢00
c 00974000
c IVALUE(2) s CURRENT LOCATION = PH2 00975000
c IVALUE(3) = CAR RENTAL AGENCY CODE = PB10 00976000
c ' 00977000
NPTFM=IVALUE (2) 00978¢00
IV3=IVALUE(3) 00979000

C ITEMP1 = DIST TO CLOSEST COUNTER OF AGENCY, 00980000
€ MINPTO = CLOSEST COUNTER'S POINT NUMBER. 00281000
I=INDEXF(11) 00932000
J=I+NORENT 00983000

I=1+1 00984000

C SCAN AGENCY COUNTERS TQ FIND NEAREST ONE OF CORRECT AGENCY 00985000
ITEMP1 299999 00886000

B-3-19

00000000 00

c

MINPTO=0

LTEMP=0

DO 320 N=1,y
LTEMP=LTEMP+1

BRANCH IF DIFFERENT AGENCY
IF{IMAXBH(MHB(N.GJ).NE-IVB]GOTO 320
NPTTO=IMAXBH(MHO(N,3))
ITEMP2=IMAXBH(MHE (NPTFM,NPTTO))

BRANCH IF NOT CLOSEST COUNTER.
IF[ITEMﬂz.GE.ITEMPT)GDTD 320

ITEMP1=ITEMP2
MINPTO=NPTTO
ITEMP3=N
L=LTEMP
320CONTINUE

IF(MINPTO.GT.0)GOTO 324)
FOLLOWING TO STATEMENT 324 EXECUTED FOR UNDEFINED RENTACAR FACILITY.

L=0
DO 322 N=I,y
L=L+1
K=IMAXBH(MHI(N,4))
IF(K.GT.0)GOTO 323
322 CONTINUE

IF(NRCRSW.EQ.1)GOTO 9 @8 9 9 9

NRCRSW=1
WRITE(G,1019)
GO0T0 9 999 9

323 NPTTO=IMAXEM (MHQ(N,3))

ITEMP3=N
WRITE(6,1018)1V3,K
NERCNT=NERCNT+1
IF(NERCNT.EQ.ERRORS)GATO $99
IV3=K

MINPTO .= NPTTO

GOTO 325

324 NPTTO=MINPTQ

325 ASSIGN 326 TO NEXT
GOTO 950

326 M=RCRQS+L-~1
CALL ASSIGN(2,MINPTO
GOT0 9 999 9

7 c 8] N
cesE XTI T

IVALUE(2)

IVALUE(3)

IVALUE(4)

IVALVE(S)

MPTFM=IVALUE(2)
IV3=IVALUE(3)
IVa=1VALUE(4)
IVS=IVALUE(5)

+PH, S,M,PH, 7,ITEMP3,PH, 11,11,PB)

CURRENT LOCATION = PH2

CURRENT PROCESS - PBi1

NEXT ADDRESS -~ FN#PB1

MH9 ROW OF LAST FACILITY = PHT

SCAN VALID FACILITY TYPES 10 EXIT TO.
IF(IvV4.EQ.DPLCO.OR. V4,

I=PVAL (PB,1)

EQ.CGTRO.OR.IV4.EQ.GRT00)GOTO 510

WRITE(6,1008)IVALUE(4),?

NERCNT =NERCNT+1

00967000
0ocegec00
00989000
00990000
00991000
00992000
00993000
00994000
00995000
00996000
00927000
00998000
00299c00
01000000
01001000
01002000
01003000
01004000
01005000
01006000
01007000
01008000
01009000
01010000
01011000
01012000
01013000
01014000
01015000
01016000
01017000
01018000
01019000
01020000
01021000
01022000
01023700
01024000
01025000
01026000
01027000
01028000
01029000 -
01030000
01031000
01032000
01033000
01034000
01035000
01036000
01037000
01038000
01039000
01040000
01041000
01042000
01043000
01044000
01045000
01046000
01047000

" B-3-20

1F(NERCNT.EQ.ERRORS)(:0TO 999
GOT0 9 9 9 9 9

c EXIT TO DEFLANING CURB. CHECK FOR FACILITY LEAVING FROM.

510 IF(I1V3.EQ.1)GOTO 520
C WW CAN LEAVE FROM SECURITY
IF (1v3.EQ.3) GO TO 535
IF(IV3.EQ.4)GOTO 515
IF(IV3.EQ.5)GOTO 525
IF(IV3.ER.11)GOTO 530
WRITE(&.1009)FACTYP(IV3)
G010 9 99 3 9

c NOTE: COMMONALITY IN FOLLOWING CODE SLOCKS TO PERMIT TAILORING FOR

c A SPECIFIC INSTALLATION.
C BAG CLAIM - DEPLANING CURB
515 U=IMAXBH(MHO(1IVS,3))
NPT TO=IMAXBH IMH3(J,3))
ASSIGN 516 TO NEXT
GOTO 950
$16 CALL ASSIGN(2,NPTTO,PH)
GNTO 9 99 9 9
C GATE - DEPLANING CURR
520 J=IMAXBH(MHI(IV5,3))
NPTTO= IMAXBH (MH3(J,3))
ASSIGN Sz1 TO NEXT
GOTD 350
521 CALL ASSIGN(2,NPTTO,PH)
GOTO 9 9 9 9 9
C CUSTDMS - DEPLANING CURB
525 J="MAXEBH(MHI(1IV5,3))
NPTTa= IMAXBH (}H3(J,3))
ASSISN 526 TO NEXT
GOTO 950
526 CALL ASSIGN(2,MPTTO,PH)
GNDTR @ 999 9
C CAR RENTAL = DEPLANING CURB
530 JU=IMAXBH{MHE(1V5,3))
NPT TQ= 1MAXBH (MH3(J,3))
ASSIGN 531 TQO NEXT
GOTO 950 -
531 CALL ASSIGN(2,NPTTO,PH)
GO™0 9 9 9 9 9 ;
C SECURITY - DEPLANING CURB
535 U = IMAXBH(MHO(IV5,3))
NPTTO = IMAXBH(MH3(J,3))
ASSIGN 536 TO NEXT
GO TO 950
536 CALL ASSIGN (2,NPTTO,PH) '
GO TO 299999

8 c s} N T I N u Sy

eeel MMI GRATION

IVALUE(2) = CURRENT LOCATION - PH2
IVALUE(3) = GATE NUMBER = MH1(PH1,9)

aOoaooo0on0 o0

NPTFM= IVALUE (2)
IV3a1VALUE(3)
L2IMAXBH(MHMO(IV3,5))
c TEST FOR GATE'S DESIGNATED IMMIGRATION FACILITY

01948000
01049000
01050000
01051000
01052000
01053¢c00
01054000
010550900
01056000
Q1057000
01058000
01059¢00
010860000
01061000
01082000
01063¢00
01064C00
01065C00
01066000
01067000
01068C00
01069000
01070000
01071000
01072000
01073000
01074000
¢1075¢000
01075C00
01077000
01C78000
01073C00
01080000
01081000
01082000
01083c00
01084000
01085000
Q1086C0Q0
01087C00
o10g8c00
01089¢00
01090000
g1091¢000
01092¢00
01093000
01094000
01095000
01096C00
01097000
01028¢00
01029000
01100000
01101000
01102000
01103000
01104000
01105000
01106000
01107000
01108000

B-3-21

c

0QOO0OO0O00O 00

c

c

C

c

IF(L.GT.0)GOTO 335
IF(NQIMMI.GT.0)GOTO 331
WRITE(6,1010)
NERCHT =NERCNT+1
IF(NERCNT.EQ.ERRORS)GOTO 999
GOT0 9 9 99 9
NO IMMIGRATION AREA SPECIFIED FOR
331 J=INDEXF(13)
K=J+NO IMMI
J=J+1
DO 332 N=u,K
L=L+1

332
334

CONTINUE
WRITE(6,1011)IV3,L

NERCNT =NERCN T +1
IF(NERCNT.EQ.ERRORS)GOTO 999
JU=INDEXF(13)+L
NPTTO= IMAXBH (MH9(J,3))
A3SIGN 338 TO NEXT

GOTO 950

M= IMMQS+L=1

CALL ASSIGN(2,NPTTO,PH,
GOTO 9 9 99 9

33s

338
S,M,PH

c 0 N T I

««:DEPLANING cu B

IVALUE(2) CURRENT
IVALUE(3)
IVALUE(4)
IVALUE(5)

NPTFM=IVALUE(2)
IV3=IVALUE(3)
IVS=IVALUE(S)

I IMAXBH(MH1(1V5,3))

GATE. FIND ANY IMMIGRATION AREA.

IF(IMAXBH (MH9(N,3)).G7.0)GOTO 334

v 7.d'PH' 11|13'PB' e'J'pH)

N

(PAX)

LOCATIDON = PH2

LAST FACILITY TYPE (OTHER THAN EXIT) = pPB1
LAST MH9 ROW (OTHER THAN EXIT) = PH?
MH1 ROW = PH1

SCAN FOR VALID FACILITY TYPES COMING FROM

IF(1v3.EQ.1)GOTO 600
IF(IV3.EQ.4)GOTO 605
IF(1IV3.EQ.5)GOTO 610
IF(IV3.EQ.11)1GOTO 615
IF (IV3.EQ.14) GO TO 620
I=PVAL (PB,1)
WRITE(6,1012)FACTYP(1V3),1I
NERCNT =NERCNT+1
IF(NERCNT.EQ.ERRORS)GOTD 999
GOTO 9 999 9
COMING DIRECTLY FROM GATE =- FIND
600 [=IMAXBH(MH1 (1VS,12))+INDEXF(4)
ITEMP1 = IMAXBH(MHO(,4))
GOTO 690
COMING FROM BAG CLAIM
605 I=IVALUE(4)
ITEMP1 = IMAXBH(MII9(1,4))
GOTO 690
COMING FROM CUSTOMS
610 I=IVALUE(4)
ITEMP1 = IMAXBH(MNS(I,4))

ASSIGNED BAG CLAIM AREA FOR FLIGHT

01109000
01110000
01111000
01112000
01113000
01114000
01115000
0tt16c000
01117000
01118000
01119000
01120000
0112100
01122000
01123000
01124000
01125000
01126000
01127000
01128000
01129000
01130C00
01131000
01132000
01133c00
01134000
01135000
01136000
01137¢00
01138000
01139c00
01140c00
01141C00
01142000
01143000
01144000
01145¢00
01146000
01147000
01148¢00
01149000
01150€00
01151000
01152000
01153c00
01154000
01155000
01156000
01157000
01158000
01159000
01160000
01161000
01162000
01163000
01164¢00
01165000
01166000
01167000
01168000
01169000

B-3-22

GOTO 690 01170000

€ COMING FROM RENTACAR 01171€00
815 I=IVALUE(4) 01172000
ITEMP1 =IMAXBH(MHO(I,5)) 01173000

GQTO 690 01174000

C COMING FROM CHECKIN=-~DEPLANING LOBBY PAX TO ENPLANING CURB 0117500
620 I = IMAXBH(MH1(1IV5,3)) . 01176000

I = IMAXBH(MH2(1,1)) 01177000

J = I+INUZXF(8B) 01178000

GO TQ 692 01179000

C DETERMINE DELPANING CURB AREA 01180c00
690 JU=ITEMP1+INDEXF(12) 01181000
692 NPTTO=IMAXBH(MHO(J,3)) 01182000
ASSIGN 691 TD NEXT 01183c00

GOTO 950 . 01184000

691 CALL ASSIGN(2,NPTTU,PH, 7,J,PH, 11,12,PB) 01185¢00
GOT0O 9 99 9 9 01186¢00

c 1187¢00
c 01188000
10 c o] N T 1 N u E 01182000

c 01190000
C...DEPLANING CURB (CARS & GREETERS) 01131000
c : 01152000
c IVALUE(2) = AIRLINE 01193000
c IVALUE(3) = MH1 ROW = PH1 011324cC0
c IVALUE(4) = NUMBER OF BAGS (INDICATES DEPL OR ENPL CB)01195000
c IVALUE(S) = 1 IF GREETER (RECIRCULATED AND PARKED) 01196000
c 01197000
1v2=1IvALUE(2) 01198000
1V3=IVALUE(3) 01199000

IV4 = IVALUE(S) 01200000

IF (IV4A.NE.O) G0 TO 700 01201000

c €12020900
C USING ENPLANING ZURB 01263000
c 01204000
M = IMAXBH(MH2(TV2,1)) 01205000

IF (IVALUE(5).EQ.1) GO TO 716 01206000

C CURB SEARCH SCHEME FOR OPEN CURB OR DP SLOTS 01207000
DO 713 K=1,10 01208000

L = I[EPSCH(K,M) 01209000

C 1IGNORE FACILITY NUMBERS > NOENPL f 01210000
IF (L.GT,MOENPL) GO TO 713 01211000

ITEMP1 = INDEXF(8)+L 01212000

C TEST FOR DUMMY FaCILITY 01213C00
IF (IMAYBH(MHY(ITEMP1,3)).EQ.0) GO TO 713 01214000

J = EPCBS+L-1 , 041215¢00

ITEMP3 = 11%(J=1)+2 01216C00

IF (ISTO(ITEMP3).EQ.0) GO TO 714 01217100

C CAR GETS CURB SLOT 01218000
CALL ASSIGN(&,J,PH, 10,1,PB) i 01219¢00

GO TO9 9 9¢@Q09 €1220c00

714 J = EPDPS+L-1 01221000
ITEMP3 = 11%(JU=1)+2 01222000

IF (ISTO(ITEMP3).EQ.0) GO TO 713 01223000

C CAR GETS DP sLOT 01224000
CALL ASSIGN(6,d,PH, 10,2,PB) 01225000

GO TO9 9999 012256000

713 CONTINUE 01227000

L =M 01228000

J = EPQCS+L=1 01229000
ITEMP3 = 11s(U=1)+2 01230000

B=3=23

IF(IV3.EQ.5)GOTN 801
C PVTCAR OR TAXI - GET ENPLANING CURB FAC NO FOR AIRLINE
801 DO B0O K=1,10
C POINT TO CURB SEARCH SCHEME
L=IEPSCH(K.J)
€ IGNORE FACILITY NUMBERS GT NOENPL
IF(L.GT.NOENPL)GDTO 800
ITEMP1=INDEXF(8)+L
c TEST FOR DUMMY FACILITY
IF(IMAXBH (MHO(ITEMP1,3)).EQ.0)GOTO 800
M=EPCHS+L -1
ITEMP3=11+(M=1)+2
IF (ISTO(ITEMP3).EQ.C) GO TO 804
C CAR GETS CURB 5LOT) .
TALL ASSIGN(6,M,PH, 10,1,PB)
GO TO 803
804 M = EPDPS+L-?
ITEMP3 = 11%(M=1)+2
IF (ISTO(ITEMP3).EQ.0) GO TO 800
C CAR GETS DP sLOT
CALL ASSIGN(6,M,PH, 10,2,PB)
GO TO BO3
800 CONTINUE
L=y
ITEMP1 = INDEXF(8)+L
M = EPQCS+L=-1
ITEMP3 = 114 (M=1)+2
IF (ISTO(ITEMP3).EQ.0) GU TO 805
€ CAR GETS QUEUE SLOT
CALL ASSIGN(6,M,PH, 10,3,PB)
GO 70 803
C CAR MUST RECIRCULATE
BOS CALL ASSIGN(S5.0,PH, 6,0,FH, 10,4,PB)
GO T0O 2 ¢ 9 9 9
C M=ENPLCURB 5TD, ITEMP1=MMSRCW, ITEMP33CAR CURB STO
BO3 NPTTO= IMAXGH (MHI(ITEMPY,3))
CALL ASSIGN(2,MFTTO,PH, 7,1TEMP1,PH)
GOTO 9 9239 ©
C Bus/LIMO
808 ITEMP2=JWAXBH (IMH2(iVZ,3))
IF(ITEMP2,.GT.0)GOTO 809
ITEMP2=IMAXBH(MHZ(1V2,1))
809 ITEMP1a2INDEXF(8)+ITEMP2-
NPTTO= IMAXBH (MHS(ITEMP1,3))
CALL ASSIGN(2,NPTTO,PH, 7,ITEMP1,PH)
GOTO 2 999 9

12 c o] N T b N u E
c+.ENTRANCE
IVALUE(2) = CURRENT LOCATION = PH2

OO0 00

NPTFM=IVALUE(2)
NPTTO=IMAXBH (MH3(NPTFM,4))
ASSIGN B13 TO NEXT
GOTO 950

B13 CALL ASSIGN(2,NPTTO,PH)
G0TD 9 999 9

01222000
01293000
01224000
01295000
01296000
01297000
0129800
01299000
01300000
01301000
01302000
0130300
01304000
01305000
01306000
01307¢00
01308000
01309c00
01310000
01311¢00
01312000
01313000
01314000
01215¢00
013150C0
01317000
01318c00
01319000
0i32¢000
01321¢00
01322¢00
01323c00
013240900
01325000
01325¢00
01327000
01328000
01329¢00
01330c00
01331060
01332c00
01333¢c00
01334000
01335000
€13356000
01337000
01338000
01339000
01340000
01341c00
01342c00
01343c00
01344000
01345¢00
01346C00
01347000
01348000
01349000
01350000
01351000
01352000

B-3-24

O

o000

13 c o N T 1 N U E
C...TICKETING & CHECKTIN (ALL)
c
c IVALUE(2) = CURRENT LOCATION - PH2
c IVALUE(3) = AIR LINE = MH1(PH1,3)
c IVALUE(4) = TICKETED/NOT TICKETED (0,1) - PBS
c IVALUE(5) = RANDOM NO. FOR FRACTIONAL TRANSFER
c IVALUE(6) = NUMBER OF PAX
c
NPTFMs IVALUE (2)
IV3=IVALUE(3)
€ IF TERMINATING (PASSING THRCUGH LOBBY), BRANCH TQ FULL-SERVICE
IF (PVAL(PB,8).EQ.1) GO 10 844
C IF GREETER OR GREETED, BRANCH TO FULL-SERVICE TICKETING
IF (IVALUE(6).EQ.0.OR.PVAL(PB,12).EQ.3) GO TO 844
C IF PAX NOT PRETICKETED .OR. RANDOM NO .GT. EXPCHK
C ... BRANCH TO FULL SERVICE SECTION.
IF(IVALUE(4) .EQ.1.0R.IVALUE(S) .GT.IMAXBH(MH2(IV3,2)))GOTO 844
GOTO 850
c
C FULL SERVICE FACILITY
c

844 JY=INDEXF(14)
K=J+NO FI1CK
Jad+i
L=0
DO 845 I=J,K
LaL+1
IF(IMAXBH(MH9(1,4)).EQ.IV3)GOTO 848
845 CON T INUE
FOLLOWING EXECUTED FOR UNDEFINED FACILITY
IF(NDTICK.GT.0)GOTO 847
WRITE(6,1028)
GOTD 99%
847 L=t
I=INDEXF(14) +1
N=TMAXBH(MHO (I,4))
WRITE(6,1027)IV3, N
NERCNT=NERCNT+1
IF(NERCNT.EQ.ERRORS)GOTO 999
848 M=TICQS+L~=1
ITEMP1 =CHEK3
N = 14
GOTO 857

EXPRESS CHECKIN FACILITY) E

850 UsINDEXF(2)
K=J+NOCHEC ’
JsJd+1
L=0
DO 851 I=aJ,K
L=l +1
IF(IMAXBH(MHS(1,4)).EQ.IV3)GOTO 853
851 CONTINUE
FOLLOWING CODE EXECUTED FOR UNDEFINED FACILITY
J=INDEXF(14)
K=J+NOTICK
Jad+i

01353000
01354¢00
01355¢00
01356000
01357000
01358000
01359000
01360000
01361000
01362000
01363000
01364¢00
01365000
01365000
01367000
01368000
01369000
01370000
01371000
01372000
01373000
01374000
01375000
01376000
01377000
01378000
01379000
01380000
0138100
01382000
01383000
01384000
01385000
01386000
01387000
01388000
01389¢00
01390000
01391000
01392000
01393000
01394000
01395000 -
01396000
0132700
0139A8C00
01399000
01400000
01401C00
01402000
01403¢00
01404c00
01405000
01406000
01407000
01408200
01409000
01410000
01411000
01412000
01413000

B-3-25

L=0 .
c SEARCH FOR FuLL SERVICE FACILITY FOR THIS AIRLINE
DO 858 I=y,K
L=L+1
IF(IMAXBH(MHS(I,4)).EO.IV3)GOTD 8589
85 CONTINU E
[USE ANY FuULL SERVICE FACILITY
IF(NOTICK.GT.0)GOTO 852
WRIT:(6,1028)
GOTD 9499
852 I=INDEXF(1¢)+1
N=IMAXBH(MH9(I.4))
WRITE(6,1029)IVa,N
NERCNT =NERCNT+1
L=1
IF(NERCNT.EO.ERRORS)GDTO 999
859 M=TICQS+L~-1
ITEMP1 aCHEK3
N=14
GOTO 857
853 M=CHKQS-1+L
N=2
ITEMP1 =CHEK2
GO0 857
857 NPTTO=IMAXBH(MH9(I,3))
ASSIGN 8%6 TD NEXT
GOTO 950
856 CALL ASSIGN(2,NPTTO, PH, 4,ITEMP1,PH, 5,M,PH, 7,1,PH, 11,N,PB)
GOTO 9 9 99 9

-
F -3

c 0 N T I N u E
c<eSECURITY

IVALUE(2) = CURRENT LOCATION - PH2
IVALUE(3) = GATE = M1 (PH1,9)

anNo00o00 oo

NPTFM=IVALUE (2)
IV3=1VALUE(3)

c DETERMINE SECURITY FACILITY ASSIGNED TO THIS GATE
I=1MAXBH(MHE (IV3,4))
IF(1.GT.0)GOTO 860
WRITE(6,1013)1v3
IMAXBH (MH9(1V3,4))=1
=1

c DETERMINE LOCATION OF SECURITY POINT.

860 U=INDEXF(3)+I ‘
M=SECQS+I-1
- NPTTO=IMAXBH (MHI(J,3))
c NOTE: MJOIFY NEXT CALCULATION TO REFLECT EARLY PASSENGERS WAITING

00

TIME (C1) AND FLIGHT TIME (MH1(PH1,6)) VIA IVALUE LIST.
ASSIGN 881 TO NEXT
GOTO 950 -
881 CALL ASSIGN(2,NPTTO,PH, 5,M,PH, 7,J,PH, 11,3,P6)
GOT0O 9 999 9

(2 X ¢]

% , ¢ ©o N T I N u g

01414000
01415000
01416000
01417000
01418000
0i1419¢00
01420000
01421000
01422000
01423c00
01424000
01425000
01425000
013227000
01428¢C00
01429c00
01430000
01431000
01432000
01433000
01424000
01435000
01436000
01437000
01438000
01439¢c00
01440000
01441000
01442000
01443000
01444000
01445000
01446000
01447000
01443000
01449000
01450000
01451000
01452000
01453000
01454000
01455000
01456000
01457000
01458000
01459000
01480000
G145i000
01482000
01462000
01454000

UNTIL CLOSER TO FLIGHT TIME TO PROCEED TO GATE. PASS CURRENT01455000

01456000
01467¢00
01468000
01469000
01470000
01471000
01472000
01473000
01474000

B-3-26

-C...BATE

o000

NPTFM=IVALUE (2)
IV3=IVALUE(3)
NPTTO=IMAXBH (MHO(IV3,3))
IF(NPTTGQ.GT.0)GOTO 873
DO 871 I=1,NOGATE

IF(IMAXBH (MH9(I,3)).N
CONTINUE
J=PVAL({PH,1)
IMAXBH (MH1(J,9))=1

871
872

(ENPLANING

P AX)

IVALUE(2) = CURRENT LOCATION = PH2
IVALUE(3) = GATE = MH1(PH1,8)

E.0)GOTO 872

WRITE(6,1014)1V3, IMAXBH(MH1({J,2)),1

IV3=1

NPTTO= IMAXBH (MH9(IV3,3))
ASSIGN 874 TO NEXT

GOTO g50

M=GAQSL+IV3-1

CALL ASSIGN(2,NPTTO,PH,
GOTO 9 99 9 9

873
874

-
-]

c 0 N T

P ARKING (PAX)
NOTE: UNLIKE THE CODE
CODE FOR "PARKI

POINTS WITHIN T

IVALUE(2) =
IVALUE(3) =
IVALUE(4) =
IVALUE(5) =
IVALUE(6) =

0000000000000 OO0

NPTFM=IVALUE(2)
IV3=IVALUE(3)
IV4=IVALUE(4)
IVS5=IVALUE(5)

IV6 = IVALUE(S)
IF(IV4.EQ.1)GDTO 720
TESTS FOR DEPLANING PAX

IF (IV3.EQ.1) GO TO 728
IF(IV3.EQ.2)GOTD 728
1IF(IV3.EQ.3)GOTD 722
GOTO 721
TESTS FOR ENPLANING PAX
720 IF(IV3.EQ.2)GOTO 728
IF(IV3.EQ.3)GOTQ 722
IF (IV3.€0.1) GO TO 728
ERROR CONDITION
721 [=PVAL(PH,4)

c

c

c

5,M,PH, 7,IV3,PH, 11,1,PB)

FOR MOST FACILITY TYPES, THE FORTRAN
NG" MAY BE CALLED FROM A VARIETY OF
HE GPSS PORTION OF THIS MODEL.

CURRENT LOCATION = PH2
TRANSPORTATION MODE - PB6
DEPLANING/ENPLANING (0/1)

CAR RENTAL AGENCY (PB10) WHEN IVALUE(3)=3
1 TO GET LOT NUMBER ONLY

WRITE(6,1015)NPTFM,I,IVv4,1IV3

NERCNT=NERCNT+1

IF(NERCNT.EQ.ERRORS)GOTO 999

GOTO 9 999 9

DEPLANING PAX = RENTAL CAR
ENPLANING PAX = RENTAL CAR

01475000
01476000
01477000
01478000
01479000
01480000
01481000
01482000
01483000
01484000
01485000
014B6C00
01487000
01488¢00
01489000
01490000
01481000
01492000
01493000
01494000
01495000
01496000
01497000
01498000
01499c00
01500000
01501000
01502000
01503000
01504000
01505000
01506000
01507000
01508000
01509000
01510000
01511000
01512000
01513000
01514000
01515000
01516000
01517¢c00
01518000
01519000
01520000
01521000
01522000
01523000
01524000
01525000
01526000
01527000
01528000
01529000
01530000
01531000
01532000
01533000
01534000
01535000

B=3-27

(o DETERMINE IF AGENCY HAS SPECIAL LOT
722 I=INDEXF(11)
J=I+NORENT
I=1+1
DO 725 N=I,u
IF(IMAXEH (MH9(N,4)) . NE.IV5)GOTS 725
L=IMAXBH(MHS(N,5))
IF(L.GT.1) GOTO 723
723 CONTINUE
DEPLANING PAX - SELF
ENPLANING PAX - SELF
GENERAL LOT :
728 LOTNO = PVAL(PB,14)
IF (LOTNO.EQ.O0) LOTNO = 1
C INSERT ASSIGNMENT OF MULTIPLE LOTS HERE
N=INDEXF{10)+LOTNO .
M=PARQS+LOTNO-1
IF (IVS.NE.1) GO TO 724
CALL ASSIGN(14,LDTND.PB)
GO TO 99999
c SPECIAL LOT
723 N=INDEXF(10)+L
M=PARQS+L~-1
724 NPTTO:IM&XBH(MHQ(N,S))
IF (NPTFIH.EQ.0) GO TO 727
ASSIGN 727 TO NEXT
GOTO 950
727 CALL ASSIGN(2,NPTTO,PH, 5,M,PH, 7,N,PH, 11,10,PB, 14,L0TNQ,PB)
GOTO ¢ 9 99 9

o000

[
[
17 c o] N T 1 N u E
c
C.eeTRANSFER P AX
c
Cc IVALUE(2) = SWITCH: 1sTRANSFER, 2=TRANSIT
c IVALUE(3) = RANDOM NO FOR FLT SELECTION (TRANSFER)
c = ARRIVING FLIGHT NUMBER PHM1 (TRANSIT)
c IVALUE(4) =« DCM/COM/INT PAX (1/2/3) ~ PB3 (TRANSFER)
c IVALUE(S) = GATE NO. = PHS
c
M=TVALUE(S)
ITEMP3=IMAXBH(MHO(M,4))
IF(ITEMP3.GT.0) GO TO B27
WRITE(6,1013) M
IMAXBH (MHO(M,4)) =1
ITEMP3 =1)
827 IV2=1VALUE(2)
GO TO (821,822),1v2
c
C TRANSFER PAX i
c

821 IF(MOFXFR.GT.0)GDTO 824
K=PVAL (PB,5)
IMAXBH (MH11(ITEMP3)) =IMAXBH(MH11(ITEMP3)) +K
ISAVEH (XFRXH) =ISAVEH(XFRXH)+1
CALL ASSIGN(4,TRX99,PH, 8,CTRL1,PH)
GOTO 9 999 9

824 cALL ASSIGN(B8,CTRLO,PH)

€ RANDOMLY CHOSE FLIGHT

N=MOD(IVALUE (3) ,NOFXFR)+1

01536000
01537000
01538000
61532000
01540000
01541000
€1542000
01543¢00
01544¢00
01545000
01546000
01547000
01548000
01549000
01556000
01551000
01552000
01553¢00
01554000
01555000
01555000
01557000
01558000
C1559000
01560000
01561000
01562600
01563000
01564000
01565000
01568100
01567000
01568000
01553000
01570000
01571000
01572000
01573000
01574000
01575000
01575100
01575200
01575700
01575200
01575500
01575G00
01575700
01576000
01577000
01578000
01579000
01580000
01582000
01583¢00
01584000
91585000
01587000
01588000
01531000
01591100
01592000

B-3-28

I=IMAXBH(MHS (N)) 01593000

K=MH1(1,11) 01594000
IMAXBH (K)=IMAXBH(K) =1 01595000
C WHEN ALL TRANSFER PAX FOR FLT ASSIGNED, DELETE FLT FROM TABLE. 01596000
IF(IMAXBH(K) .GT.0)GOTO 820 01597000
DO B23 L=N,NOFXFR 01598000
ITEMFI-MHStL) 01599000
ITEMP2=ITEMP1+1 01600000
IMAXBH(ITEMP1)=IMAXBH (ITEMP2) 01601000
823 CONTINUE 01602000
NOFXFR=NOFXFR=-1 01603000
B20 CALL ASSIGN(1,1,PH) " 01604000
GOTO 9 999 9 01605000
c : 01606000
C TRANSIT PAX 01607000
c . 01608000
822 K = IVALUE(3) 01602000
C FIND GATE OF ARRIVING FLIGHT 01610000
IGAT = IMAXBH(MH1(K,9)) 01611000
K = K+1 01612000
C FIND NEXT DEPARTURE AT SAME GATE 01613000
DO 8926 1=K,999 01614000
IF (IMAXBH(MH1(I,1))) 818,826,819 01615000
819 IF (IMAXBH(MH1(1,9)).EQ.IGAT) GO TO 817 01616000
826 CONTINUE 01617000 °
C NO NEXT DEPARTURE IN TABLE 01618000
818 K = PVAL(PB,S5) 01619000
IMAXBH(MH11(ITEMPSJ) =IMAXBH(MH11(ITEMP3))+K 01,620000
ISAVEH (XFRXH) = ISAVEH(XFRXH)+1 , 01€21000
CALL ASSIGN (4,TRX99,PH, 8,CTRL1,PH) 01622000
C XAC WILL BE TERMIN&TED 01623000
GO TO 999 99 01624000
817 CALL ASSIGN (1,I,PH, 8,CTRLO,PH) 01625000
GO T0 999 99 01626000
c 01627000
c 01628000
18 c o] N T 1 N u E 01629000
¢ 01630000
C.e.TRANSFER FLIGHTS 01631000
c 01632000
c IVALUE(2) = MHY1 ROW NO = PHt 01633000
c IVALUE(3) = INIT./DELETE/ADD/TICK CNTER PT NO 0/1/2/3 01634000
¢ 01635000
IV2=IVALUE(2) 01636000
I1V3=IVALUE(3) 01637000
IF(IV3.EQ.1)GOTO 832 01638000
IF(IV3.EQ.2)GOTO 830 ' 01639000
IF(IV3.EQ.3) GO TO 836 01639100
C INITIALIZE TABLE 01640000
DC 834 I=1,999 01641000
c TEST: END_OF_TABLE/ARV_FLT/DEP_FLT ' 01642000
IF(IMAXBH(MHI(I,1)))835,834,833 01643000
833 ITEMP1-IMAXBH(MH1(1.6))'60 01644000
IF(ITEMP1.GT.ISAVEH(XFAXH))GOTO 835 01645000
IF(ITEMP1.LT.ISAVEH(XFDXH))GOTO 834 01646000
IF(IMAXBH(MH1(I,11)).EQ.0)GOTO 834 01647000
NOF XFR=NOFXFR+1 01648000
IMAXBH(MHS(NDFXFR))-I 01649000
B3 CONTINU 01650000
835 CALL ASSIGN(1, 1 PH) 01651000
GOTO 9 99 9 9 01652060

T B-3-29

C DELETE FLIGHT FROM TABLE MHS
832 IF(IMAXBH(MHS(1)).NE.IV2)GOTO 99 9 9 9
DO 829 I=1,NOFXFR
ITEMP1=MHS5(1)
[TEMP2=ITEMP141
IMAXBH(ITEMP1)=TIMAXBH(ITEMP2)
829 CONTINUE
NOFXFR=NOFXFR~1
GOTO 9 9 9 9 9
C ADD FLIGHT TO TABLE MH5
830 IF(NOFXFR.EQ.100)GOTC 331
NOFXFR=NOFXFR+1
IMAXBH (MHS (NOFXFR) }=1V2
GUT0O 9 99 g 9
C ERROR - TABLE OVERFLOW.
831 WRITE(6,1023)1v2
GOTO 9 9 9 9 9
C _FIND TICKET COUNTER FOR CORRECT AIRLINE FOR TRANSFER PAX
836 IAIRLN=IMAXBH(MH1(1v2,3))
IROWNO = IMAXBH (MHB (14,2))
INUMTC = IMAXBH(NMHB(14,1))
ITEMP1 = IROWNO+1
ITEMP2=IROWND+INUMTC
00 837 I=ITEMP1.ITEMP2
IF(IMAXBR(MH9(1,4)).EQ.1AIRLN) GO TO B38
837 CONTINUE
I=I1TEMP1
ITEMP2=[MAXBHIMHI(I,4))
WRITE(6,1029) IAIRLM,ITEMP2
WRITE(6,1033) IV2,Iv3
838 IPTNO= IMAXBH (MHO(1,3))
CALL ASSIGN(2,IPTNO,PH)
GOTD 99999

19 c s} N T 1 N U E

CALLING XAC'S FOUND ON USER CHMALN "ERROR*

000000 OG

IV2=IVALUE(2)
GOTO(901.902,903.904.905,906.907.908.909.910).IV2
c NO VEHICLE-PAX MATCH AT DEFLANING CURB
801 WRITE(6,1016)IVALUE(3)
GOTO 9 9 9 ¢ 9

c PAX ENTERED DEPLCURB LOGIC WITH GR TX CODE LOGIC NOT CODED TO HANDLE

902 WRITE(6,1017)IVALUE(3),IVALUE(4)
GOTO e 999 9

903 CONTINUE)

904 CONTINUE

905 CONTINUE

906 CONTINUE

907 CONTINUE

908 CONTINUE

909 CONTINUE

910 CONTINUE
GOTO 9 999 9

+«eMISCELLANEOWUS GPSS ERROR CONDITION

CALLED FROM GPSS TO RECORD A VARIETY OF ERROR CONDITIO
AT END OF RU01677000

01653000
C1€54000
01655000
01656000
01657000
01658000
01659000
01660000
01561000
0166200
01663000
01664000
01665000
01686000
01667000
01668C00
01669C00
01669025
01669050
01669100
01669150
016692700
01669250
01669700
01669050
01669700
01669425
01665430
0i1669,35
C1669.40
01569050
01663200
01E€C2€00
01670000
01871¢00
01572009
01673000
c1674C00
01675000
0167600

01678000
01679000
01580c00

.01681000

01682000
01683¢00
01684000
01685¢00
0168G000
01687000
01608000
01689000
01630000
01691000
01692000
01833000
01694000
01695000
01696000
01697000

B-2-30

c

20 c 0 .N T ¢ N u E

C.e. FORMATTED REPORTS
c

c

0

o000

C1=1VALUE(2)
SEARCH FACILITY TYPES.
00 450 I=1,20
NSWTCH=0
K=IMAXBH(MHB(I, 1))
BRANCH IF NO FACILITIES FOR TYPE sT+.
IF(K.EQ.0)GOTO 450
SET DO-LOOP VARIABLES FOR SCAN OF FACILITY TABLE (MH9).
J= IMAXBH (MHB(1,2))

K=K+
Jayd+1
BRANCH TO APPROPRIATE HEADER FOR:
GATES CHECKIN/TICKETING
CusToms ' CAR RENTAL
SECURITY IMMIGRATION

SKIP OTHER FACILITY TYPES.
GOTO(400.400,400,450.4oo.a50.450.450,450,450,
* 490.450.400.400.450.450.450.450.450,450), I
400 IF{NTL!NS.GT.OJwRITE(B.1050}((ITITLE(II.JU).II-1.64).ud-1.NTLINS)
GOYO(401.402.403.450.405.450.450.450.450,450.
* 411.450.413.414,450.450.450.450.450.450). I
BOARDING GATES
401 WRITE(6,1051)
GOTO 430
CHECKIN(EXPRESS)
402 WRITE(6,1052)
GOTO 430
SECURITY
403 I TE(6,10563)
GOTQ 430
CusTOMS
408 WRITE(6,1055)
GOTQ 430
CAR RENTAL
411 WRITE(6,1061)
GOTO 430
IMMIGRATION
413 WRITE(6,1063)
GOTO 430
TICKETS&ECHECKIN
414 WRITE(6,1064)
GOTO 430
COMPLETE HEADING. THEN CHECK EACH FACILITY OF TYPE “Is.
430 WRITE(6,10092)
WRITE(6,1094) '
WRITE(6,1096)
NCOUNT=11+NTLINS
ITEMP1=FACOSX(I)
IQUER=4+ (ITEMP1=1)
IQUEI=IQUER+IQUER
ISTOX=11% (ITEMP1=1)
ITEMP1=ITEMP1=FACQSX (1)+1
DO 455 Nau,K
- CHECK FOR DUMMY FACILITY.
IF(IMAXBH(MHO(N,3)).EQ.0)GOTO 448
NCOUNT =NCOUNT+2
CHECK FOR FULL PAGE (55 LINES).

01698000
01689000
01700000
01701000
01702000
01703000
01704000
01705000
01706000
01707000
01708000
01709000
01710000
01711000
01712000
01713000
01714000
01715000
01716000
01717000
01718000
01719000
01720000
01721000
01722000
01723000
01724000
01725000
01726000
01727¢00
01728c00
01729000
01730000
01731000
01732¢00
01733000
01734000
01735¢c00
01736000
01737000
01738000
01739000
01740000
01741000
01742000
01743¢00
01744000
01745000
01746000
01747000
01748000
0174g9¢c00
01750c00
01751000
01752000
01753¢00 °
01754000
01755000
01756000
01757000
01758000

B-3-31

'l"‘

421

422

423

425

431

433

434

443

445

444

448

447

449
448

IF(NCOUNT.LE.55)G0DT0 445
WRITE(6,1078)
XF(NTLINS.GT.OJWRITE{G.tOSOJ[{ITITLE{II.UU).II=1.54J.UUI1,NTLTNS)
GOro(421.azz.423.450.425.450.450.450.450.d50.
41r.aso.433,434,425.450,450.450.450,450). 1
BOARUING GATES
WRITE(6,1051)
GOTO 443
CHECKIN(EXPRESS)
WRITE(6,1052)
G070 443
SECURITY
WRITE(6,1053)
GOTO 443
cusTtoms
WRITE(6,1055) .
GOTO 443 ’
CAR RENTAL
WRITE(6,1061)
GOTO 443
IMMIGRAT ION
WRITE(6,1063)
GOTOD 443
TICKETS&CHECKIN
WRITE(5,1064)
GOTO 443
NCOUNT=11+NTLINS
WRITE(6,1092)
WRITE(6,1094)
WRITE(6,1096)
ITEHP2=ISTU(ISTDX+1J+£STD(ISTDX+2)

CHECK FOR UNDEFINED NUMBER OF AGENTS. 1000 ARBITRARY NUMBER.
IF{ITEMF2.GT.1000)NSWTCH=1
ITEMP3=1STO(1STOX+6)*SCALE
IF(ITEMF3.GT.0)GOUTO 444
ITEMP4=0
XTEMPS=0,0
ITMPEM=0
ITMPS5=0
GOro 446
ITEMP4=ISTO(15TOX+7)
XTEMPS=FSTO(ISTOX+3)/C1
ITEMP6=FSTO(ISTOX+3)/ITEMP3
ITHPEM=ITEMPS /60
ITMP6S=MOD(ITEMPG, 60)
ITEMP7=IQUE(1QUEI+2)*SCALE
IF{ITEMP7.GT.0)GOTO 447
ITEMRg=0
XTEMP9=0.9
ITM1OM=0
ITM105=0
GOTO 44s
ITEMP8=IQUE(1QUEI+7)*SCALE
XTEMPO=FQUE(IQUER+2)*5CALE/C1
1TMP10=FQUE(IQUER+2)*SCALE/ITEMP?
ITM1OM=ITMP10 /60
ITM10S=MOD(ITMP10,60)
WRITE(6.1075)ITEMP1.ITEMP2.!TEMP3,ITEMP&.XTEMPS,ITMPSM,

ITMPES, ITEMP7,ITEMP8, XTEMPS, I TM10M, ITM10S
ITEMP1=ITEMP1+1
IQUER= IQUER+4

01759000
01760000
01760100
01761000
01762000
01763000
C 764000
01755000
01766000
01767000
01768000
01763000
01770c00
01771000
01772000
01773700
01774000
01775000
01776000
01777000
01778000
01779000
01780000
01781000
01782000
01783000
01784000
0178500
01786000
01787000
01788000
01789000
01790¢00
01791000
01792000
01793000
01794¢c00
01785000
01796000
01797000
Qi798c00
01799¢00
01800000
01801000
01802000
01803c00
01804000
01305¢00
01806000
01397000
0180800
01809c00
01810000
01811000
01212000
01813000
01814000
01815000
018160090
01817000
01818000

B=3=32

h||.’

IQUEI=IQUEl+8
ISTOX=1STOX+11
455 CONTINUE
WRITE(6,1078)
c TEST FOR UNDEFINED NO. OF AGENTS.
IF(NSNTCH.EO-1)WRITE(6.1079)
450 CONTINUE

GOTO 9 99 9 9

N
-
(2]

. N T I N u g
«««CLOCK UPDATE _
IVALUE(2) = TIME INCREMENT (SECONDS)

O0000 00 0

ITEMP1=ISAVEH(CLKXH)+IVALUE(2)/BO
IF(MOD(ITEMP1,100).GE.GO)ITEMP1IITEMP1+4O
ISAVEH (CLKXH)=ITEMP1

GOTO 9 9 9 9 9

22 c o N T I N U E
+«.SNAPSHOTS

STORAGE OUTPUT FLOW

NSWTIEeH=0
ITEMP12ISAVEH(CLKXH)
IF(LINSNP.LT.50) GO TO §53
NSWFCH=ET
LINSNP=NTLINS
xF(NTLst.GT.O)wntTE(iz,1050)((IthLE(I.u).I=1,s4).J-1.NTLst)
WRITE(12,1374)
WRITE(12,1082) 7
WRITE(12,107G) _— _ .

653 DO 654 I=1.20-- \,? q .

ITEMPA(I)=ISAVEH(I)#SCALE ’

654 CONTINUE
WRITE(12.1077)1TEMP1.(ITEMPA(I).I-1,24)
IF(LINSNX.LT.50) GO TO 96C
LINSNX=NTLINS
IF(NTLINS.GT.O)WRITE(IG,1050)((ITITLE(II,JJ),II$1.54)'00’1.NTLIN5)
WRITE(13,1070)
WRITE(13,1082)
WRITE(13,1076)

960 LINSNXaLINSNY+1
DO 660 IR=1,24
ISTRNQ=GPSTO(IR)
IF(ISTRND.EQ.0) GO TO 965
JENTCT =11+ (ISTRNO=1)+6
JCRCON=11%(ISTRNO=1)+1
XENTCT =ISTO(JENTCT)
XCRCON=ISTO(JCRCON)
FLCH:{(xENTCT—ENTRCT{IR}j-(XCRCDN-CRCON(IR)))*SCALE
ENTRCT(IR)=XENTCT)
CRCON(IR)=XCRCON

TSS0UT(1)=1ITEMP1

000000 OO0

B=3-33

01819000
01820000
01821000
01822000
01823000
01824000
01825000
01826000
01827000
01828000
01829000
01830000
01831000
01832000
01833000
01834000
01835000
01836000
01837000
01838000
01839000
01840000 -
01841000
01842000
01843000
01844000
01845000
01846000
01847000
01848000
01849000
01849100
01850000
01851000
01852000
01879000
01880000
01881¢c00
01832000
01883000
01884000
01885000
01886000
01886020
01386040
01886060
01886080
01886100
01386120
01885140
01886160
01885180
01835190
0188€200
01886220
01866240
01336260
01886280
01883300
01836320
01886340

c
c
c

c
c
c

O 0O 0000 00000000 OO0

TSSOUT(IR+1)=FLOW
QUEUE LENGTHS

965 I1TQUE=GPQUE(IR)
IF(ITQUE.EQ.0) GO TO 967
JQUE=8+(ITQUE-1)+6

TSQUE(1)=TTEMP1
TSQUE (IR+1) =IQUE (JUQUE)«SCALE

HALF-WORD SAVEYALUES

967 ITHLF=GFHALF(IR)
IF{ITHLF.EN.O0) GO TO 660
ISHLF=ISAVEH(ITHLF)

FLCW=(ISHLF=JTHLF(IR))#SCALE
TSHALF(1)s1TEMPY
TSHALF(IR+1)=FLOW

UTHLF(IR)=ISHLF

660 CONTINUE
D0 969 IiL=1,7

JSECT L=IMAXAH(MH12(IL))
TSFLOW(1)=ITEMPY
TSFLOW(IL+1)=(JSECFL-TSECFL(IL))*SCALE

969 ISECFL({IL)=JSECFL

PO 972 [Ta1,15
JTCKFL=IMAXBH(MH13(1T))
TTFLOW(1)=ITEMP1

TTFLOW(IT+1)={JTCKFL~ITCKFL(IT))*SCALE
973 ITCKFL(IT)=JdTCKFL
WRITE(13,1077) (TSSOUT(IP),IP=1,25)
WRITE(13,1093) (TSQUE(1P),IP=2,25)
WRITE(13,1085) (TSHALF(1P),IP=2,25)
WRITE(13,1095) (1SFLOW(IL),IL=2,B)
WRITE(13,1095) (TTFLOW(IP),IP=2,16)
WRITE(14,1097) (TSSOUT(IP),IP=1,25),
*(TSHALF(IP),Ir=2,25),
*(TSQUE(IP),1IP=2,25),
*(TSFLOW(IL),IL=2,8),
*(TTFLOW(IT),IT=2,16)
GOTO 9 999 9

(o]
()

c o} N T I N u E

««.CHANGE CARD PROCESSING

IVALUE(2) = SWITCH, =1 TO READ CARD

=2 TO LOWER STORAGE
IVALUE(3) = STORAGE NUMBER FOR LOWERING
IVALUE(4) = DESIRED STORAGE CAPACITY

IF (IVALUE(2).EQ.2) GO TO 590
CHANGE CARD PROCESSING
BRANCH 1F FIRST ENTRY

IF (ICHNG1,EQ.0) GO TO 580
PROCESS PREVIGUS CHANGE CARD

1F (SERVRS{1).EQ.G) GO TG 560
CHANGE OF SERVERS

B-3=34

01885260
01886280
01886400
01886420
01886440
01886250
01886260
01886480
01886500
01886520
01886540
01866260
0188680
01286590
01esEs92
01585594
0128600
01E85620
01886F40
01886660
01586661
0188662
01886€63
01886664
01886655
01836667
0188669
013838671
01886673
0138675
01885700
01386720
01886740
01886750
01886751
01886752
01886754
01886756
01886758
01886760
01887000
01E88¢00
01839000
01220000
01891000
01822¢00
01893000
01894000
01895000
01896000
01897000
01828000
01823000
01900000
01901¢00
01202¢00
01903000
01904000
Q1905¢C00
01806000
01507000

00

1 1
M=o0
551 DO 552 L=1,20
IF (SERVRS(I).EQ.FACTYP(L)) GO TO 553
582 CONTINUE
GO TO 557
5§83 J = FacEsSxX(L)
IF (U.EQ.0) GO TO 557
J = J=1
S84 I = I+1
IFACNQ = SERVRS(I)
IF (LFACND.EQ.0) GO TO 558
IF (IFACNO.LT.0) GO TO 5§51
IF (IFACNO.GT.NFACSM(L,1)) GO TO 557 .
K1 = 11%(J+1FACNO=1)+1
K2 = K141 -
CURRENT CONTENTS
ICONT = ISTO(K1)
REMAINING CAPACITY
IRCAP = [STO(K2)
I = I+1
NEWCAP = SERVRS(I)
IF (NEWCAP.LT.0) GO TO 557
IF (NEWCAP.GE.ICONT) GO 10 555

MUST LOWER CAPACITY BELOW PRESENT CONTENTS USING STORAGE CHANGER

TRANSACTION IN GPSS
ISTO(K2) a o
M= M+1
IMAXBH (MH7(M,1)) a J+IFACNO
IMAXBH (MH7 (M+30,1)) = NEWCAP
GO TO 554
MUST RAISE CAPACITY OR LOWER TO > OR = PRESENT CONTENTS.
CHANGER XAC WILL LEAVE/ENTER TO RESTART DELAY CHAIN
555 ISTO(K2) = NEWCAP-ICONT .
M= M+
IMAXBH (MH7(M,1)) = J+IFACNO
FIX ENTRY COUNT
ISTO(K1+5) = ISTO(K1+5)=1
GO TD 554
557 WRITE (6,1101) TIME.SERVRS.I.M.L.J.IFACNO,K1,K2,
* ICONT, IRCAP,NEWCAP
CALL LOGIC (LS,u0BLS) ;
GO TO 999 99 :
558 DO 559 I1=1,30
SERVRS(I) = 0
$59 CONTINUE
ISAVEH (NSCXH) = M
580 CONTINUE)

INSERT HERE ADDITIONAL CHANGE OPTIONS

READ NEXT CHANGE CARD ’
READ (5,1002,END=585) ICARD
NCARD = NCARD+1
LINECT = LINECT+1
IF (LINECT.LT.51) GO TO 579
LINECT = 1
WRITE (6,1005)
579 WRITE (6,1004) NCARD, ICARD
ENTER HERE FIRST TIME THROUGH
580 IF (ICARD(1).NE.ICHAN) GO TO 585

B-3-35

STORAGE

01908000
01909¢000
01210000
019t1000
01912000
01913000
01914000
01915000
01916000
01917000
01918000
01919000
01929000
01921000
01922000
01923000
019240n00
01925000
01926000
01827000
01928000
01923000
01930000
01931000
01932¢c00
01933000
01934000
01835000
01936000
01937000

01938000

01939000
01940000
01941000
01942000
01943000
01944000
01945000
01945000
Q1947c00
01948000
01949000
01950000
01951000
01952000
01953000
01954000
01955000
01956000
01957000
01958000
01959000
01960000
01961000
01962000
01963000
01984000
01965000
01566000
019670900
01968000

ICHNGT = 1
CALL XCODE (BUFFER,80)
WRITE (10,1002) ICARD
BUFFER(!) = NAMECH
BUFFER(2) = IAND(BUFFER(2) ,MASK2)+BLANK2
CALL XCOUE (BUFFER,B84)
READ (10,CH)
1C = ISAVEH(CLKXH)
C SET ADVANCE TIME
ISAVEF (CHGXF) = 60*((TIME-(TIME/100)-40)-(IC'(IC/1°0)-40))
GO To 999 99)
C NO MORE CHANGES
585 ISAVEF (CHGXF) = 1000000
GO TO 999 99
c
C LOWER STORAGE CAPACITY
c

590 v = 11»(IVALUE(3)=1)+1
NEWCAP = IVALUE(4)
NURCAP = NEWCAP-ISTO(J)
IF (NURCAP.GE.O0) GO TO 592
ISTO(JU+1) = 0
G070 999 99

§92 ISTO(u+1) = NURCAP

C STONAGE LOWERING COMPLETE

ISAVEH(SLCXH) = 1
GO 10 999 99

c
24 c ¢} N T b N U E
c
C...COKNCESSION
c
c IVALUE(2) = CURRENT LOCATION - PH2
c IVALUE(3) = FLIGHT TABLE RGW = PH{
c IVALUE(d) = KANDOM NUMBER FOR CONC. AND LEAVE TIME
c IVALUE(5) = CLOCK = Ct
c IVALUE(6) = SWITCH, =1 FOR LO85Y CONCESSION
Cc =2 FOR CONCOURSE CONCESSION
c

IF (NOCONC.EQ.0) GO TO 752
NPTEM = IVALUE(2)
IFLT = IVALUE(3)
IGAT = IMAXBH(MH1(IFLT,9))
1=0
C DETERMINE SECURITY FACILITY ASSIGNED TQ GATE
IF (IVALUE(G).€Q.2) 1 « 1MAXBH(MHS(IGAT,d))
€ COUNT CONCESSIONS WITH SAME SECURITY
L = INDEXF(15)+1
M = INDEXF(15)+NOCONC
1C = ¢
DO 751 J=L.M
IF (INMAXBH(MH9(U,4)).EQ.1) IC = IC+1 ,
751 CONTINUE
IF (1C.GT.0) GO TO 753
C NO CONCESSION AVAILABLE
752 CALL ASSIGN (5,0,PH)
ISAVEH(TRVXH) = 0
GOTO 99 399
C SELECT ONE CONCESSION RANDOMLY
753 IRN & MOD(IVALUE(4),IC)+1
IC =0

B-3-36

01969000
01970000
01971000
01972c00
01973c00
01974000
01975000
01976000
01977000
01978000
01979000
01980000
01981¢00
01982000
01983000
01984000
01985000
01885000
01987000
01988000
01989000
01990000
01991000
01992000
01993¢00
01294000
01295000
0199600
01997¢c00
01998000
01299000
02000c00
02001000
02002r00
02003c00
02004000
0200500
02006C00
02007000
02008¢00
02009C00
02010000
02011000
02012000
02013000
02014000
02015000
02016000
02017¢00
02018000
02019¢00
02020000
02021000
02022000
02€23000
02024000
02025000
02026000
02027000
02028000
02029000

1

754
755

756

DO 754 JalL,M
IF (IMAXBH(MHO(J,4)).EQ.I) IC = IC+i
IF (IC.EQ.IRN) GO TQ 755

CONTINUE

NPTTO = IMAXBH(MHS(J,3))

ASSIGN 756 TO NEXT

GO TO 950

ICt a IVALUE(S)

C COMPUTE WHEN TO LEAVE CONCESSION

O0000OO0O0

OO0 0O00

25

l.lc

951

ITIM = IMAXBH(MH1(IFLT,5))*60-1C1

IF (IVALUE(6).EQ.1) ITIM = ITIM=LEAVEL-LEAVEV*IVALUE(4)/1000
IF (IVALUE(6).EQ.2) ITIM = ITIM=~LEAVEC-LEAVEV*IVALUE(4)/1000

IF (ITIM.LT.O0) ITIM = 0

CALL ASSIGN (2,NPTTO,PH, 5.ITIM.PH; 7,d,PH, 11,15,PB)

GO TO 999 99
L]

(o 0 N T 1 N u E

ONCOURSE

IVALUE(2)=CURRENT LDCATION (PT. NO,=PH2)

IVALUE(3)sGATE NUMBER==MH1(PH1,9)

NPTFM= IVALUE(2)

IV3=IVALUE(3)
ISECaIMAXBH(MHI(1IV3,4))
J=INDEXF(3)+ISEC

NPTTD=IMAXBH (MH9(J,3))

ASSIGN 920 TO NEXT

GO TO 950

CALL ASSIGN(2,NPTTD,PH, 5,ISEC,PH)
GO TO 99999

ALKING TIME CALCULATION

MHE VALUES MAY BE MODIFIED IN ANY DESIRED MANNER HERE.

IF(NPTOSW.EQ.1)GOTD 951
IF(NPTFM.GT.0.AND.NPTTQ.GT.0)GOTO 9851
NPTOSW=1
WRITE(6,1032)NPTFM,NPTTO, IVALUE
ISAVEH (TRVXH) =IMAXBH (MHE (NPTFM,NPTTQD))
ITEMPT=PVAL(PH,9)+ISAVEH(TRVXH)
CALL ASSIGN(9,ITEMPT,PH)
GOTO NEXT, (309,313,326,338,
516,521,526,531,536,
691,719,
727,756,
813,856,861,874,920)

L 3K 3R BN]

+«.ERROR A BEND

IF ERROR COUNT EXCEEDS “ERRORS" (DEFAULT VALUE s0),

PROGRAM WILL TERMINATE.

999 WRITE(6,1999)

CALL LOGIC(LS,JOBLS)
GOTO 9 99 9 9

B-3-37

02030000
02031000
02032000
02033000
02034000
02035000
02036000
02037000
02038000
02033000
02040000
02041000
02042000
02043000
02044000
02044025
02044050
02044100
02044150
02044200
02044250
02044200
02044250
02044400
02044450
02044500
02044550
02044¢00
02044¢50
02044700
02044750
02044800
02044950
02045¢00
02046000
02047000
02048000
02049000
02050c00
02051000
02052000
02053000
02054000
02055000
02056000
02057000
02058000
02059000
02060000
02061000
02062000
02083000
02064000
02065000
02066000
02067¢00
02068000
02069000
02070000
02071000
02072000

bR b
£

c 02073000
c 02074000
c 02075000
c 1 c] N T 1 N U E 02076000
c 2 ¢ o] N T 1 M u E 02077000
c 3 c o] N T 1 N u E 02078000
cC 4 c 0 N T 1 N V] 3 02079000
c 5 c c N T 1 N v E 02080000
c & c 0 N T 1 N U E 0208100
c 7 c 0 N T 1 N U € 02082000
cC 8 c 8] N T 1 N U E 02083000
c 9 c 5] N T 1 N 7] E 02084000
c 10 c o] N T 1 N u E 02085000
c 11 c 5] N T. 1 N U E 02086000
c 12 ¢ 0 N T 1 N 1] [2087000
c 13 c 0 N T 1 N u- E 02088000
c 14 c o N T 1 N u E 02089000
c 15 c a N T 1 N u E 02090000
t 16 c o N T 1 N v E 02091000
c 17 c o] N T 1 N u E 02092000
c 18 c 1] N T 1 N u E 02093000
c 19 c o] N T 1 N U E 02094000
c 20 c o] N T 1 N u E 02095000
c 21 c o] N T 1 N U E 02096000
c 22 c o N T 1 N v E 02097000
c 23 c "] N T 1 N u E 02098000
C 24 c c N T 1 N U E 02099000
c 25 c 0 N T b3 N u E 02100000
c 02101000
c 02102000
c 02103000
99999 R E T v R N 02104000
c 2105000
c 02106000
c 02107000
1000 FORMAT(' ERROR IN FLIGHT INPUT DATA CARD.') 02108000
1001 FORMAT(/.! WARNING, NC CHECKIN FACILITY DEFINED FOR AIRLINE CO02109000
“E',13,', FACILITY OF AIRLINE CODE',I3,' USED. RESULTS UNPREDICO02110n00
*TABLE. ') 02111000

1002 FORMAT (20A4) 02112000
1003 FORMAT (' ERRGR IN GEOMETRY CARD. INVALID FACILITY TYPE IN CARD $02113000
*EQUENCE',14,'.") 02114000

1004 FORMAT (2X,14,3%,2044) 02115000
1005 FORMAT (1H1,///,15X,'I NP UT DA T Al 27D 02116000
1006 FORMAT(//,10X,'E N D @ F INPUT DATA"//) 02117000
1007 FORMAT(/,' WARMING. FROBLEM IN "GROUND TRANSPORT MODE® LOGIC. 02118000
« PASSENGER ASSIGNED TO BUS. CHECK GRTRANSF DATA.') 02119000

1008 FORMAT(/,' WARNING. ATTEMPT TO EXIT TO BLOCK NUMBER',15,' VIA 02120000
s"EXIT" . RESULTS UNPREDICTABLE. CHECK FUNCTION',I3,'.') 02121000

1009 FORMAT(/,"' WARNING. ATTEMPT TO EXIT TO DEPLANING CURB FROM FACG2122¢00
#ILITY TYPE ',A4,', RESULTS UNPREDICTABLE.') 02123000

1010 FORMAT (/,' WARNING. FASSENGER ATTEMPTED TO GO TO IMMIGRATION. 02124000
« NO FACILITIES DEFINED. RESULTS UNPREDICTABLE.') 02125000

1011 FORMAT(/, ' WARNING. NO IMMIGRATION FACILITY SPECIFIED FOR GATEQ2126000
«',I3,'. ',13,' CHOSEN.') 02127000

1012 FORMAT(/,' WARNING. ATTEMPT TO EXIT TO DEPLANING CURB FROM ',A02128000
g, !, RESULTS UNPRCDICTABLE. CHECK FUNCTION',I3,',1) 02129000

1013 FORMAT(/,' WARNING. NO SECURITY FACILITY DEFINED FOR GATE',I3,02130000
*',© SECURITY FACNO 1 ASSIGNED. CHECK GATE INPUT CARD FOR IPARAMO2131000
=(2).',/,! THIS MESSAGE WILL NOT REPEAT.') 02132000

1014 FORMAT(/,' WARNING. GATE',14,' NOT DEFINED. CHECK DATA FOR D02133000

B-3-38

.
* |IIC

*EPARTING FLIGHT',IS,', CATE',14,' USED.',/,' RESULTS UNPREDICT02134000

ABLE.',/,! THIS MESSAGE WILL NOT REPEAT.') 02135000
1015 FORMAT(/,° WARNING. INVALID CALL TO FORTM "PARKING". PH2=!,102136000
*4,', PH4=',15,', PB7=',12,"', PB6s',12,'. RESULTS UNPREDICTABLE.'02137000
s) . 02138000
1016 FORMAT(/,!' ERROR. VEHICLE XAC',IS,' UNABLE TO MATCH WITH PAX A02139000
*T DEPLANING CURSB. CHECK USER CHAIN “ERRQR" FOR THIS XAC.!', 02140000
o/, RESULTS UNPREDICTABLE, ') _ 02141000
1017 FORMAT(/,! ERROR. PAX XAC WITH GROUND TRANSPORT MQDE',13,' ENT02142000
*ERED BLOCK DPLCO. CHECKk USER CHAIN “ERROR" FOR XAC NO',15,'.', 02143000
LV RESULTS UNPREDICTABLE.') . 02144000
1018 FORMAT (/,' WARNING. NO FACILITY DEFINED FOR CAR RENTAL AGENCY, 02145000
« CODE',13,', FACILITY FOR AGENCY CGDE',[3,' UsED. RESULTS UNPR02146000
#*EDICTABLE. ') 02147000
1019 FORMAT(/, ! WARNING. NC CAR RENTAL FACILITIES DEFINED. RESULT02148000
*S UNPREDICTABLE. THIS MESSAGE WILL NOT REPEAT.') 02149000
1020 FORMAT(///,! WARNING. NO FACILITIES HAVE BEEN DEFINED FOR THE 02150000
*FOLLOWING CLASSES:') 02151000
1021 FORMAT (11X,A8) 02152000
1022 FORMAT(/,' EXECUTION CONTINUES.') 02153000
1023 FORMAT (/" WARNING. ACOITION OF DEPARTING FLIGHT, MH1 Raw NO',02154000
*14,' TO TRANSFER FLIGHT TABLE MHS WOULD HAVE CREATED QVERFLOW CONDO02155000
«ITION,',/,! FLIGHT NOT ADDED. EXECUTION CONTINUES, ') 02156000
1024 FORMAT (///) 02157000
1025 FORMAT (' WARNING. POINTX AND POINTY BOTH 0 FOR POINT',14,'.') 02158000
1026 FORMAT (11X, ' TICKETSECHECKIN') 02159000
1027 FORMAT(/,' ERROR, NO TICKETS&CHECKIN FACILITY DEFINED FOR AIRL 2160000
*INE CODE',13,'. FACILITY OF AIRLINE CODE',13,' USED.') 02161000
1028 FORMAT(/,! ERROR. NO “TICKETSZCHECKIN" FACILITIES DEFINED FOR 02152000
*ENPLANING PASSENGERS. RUN TERMINATED.') 02163000
1028 FORMAT(/,"' ERROR. MO EXPRESS CHECKIN FACILITY DEFINED FOR AIRLO2164000
*INE CODE',13,"'. FUULL SERVICE FACILITY OF AIRLINE CODE',13,' USED02165000
') 5 _ 02166000
1030 FORMAT (11X, ' IMMIGRATION') 02167000
1031 FORMAT(/,' e»* ERRUR IN INPUT DATA. DOUBLE DEFINITION OF ',A8,' 02168000
*NUMBER ',13,°'. RUN TERMINATED (SEE FORTM, STATEMENT NO. 269).') 02169000
1032 FORMAT(/,' =+ HMON-POSITIVE POINT NUMBER IN WALKING TIME CALC.',/'02170000
* NPTFM = ',14,'; NPTTO = ',14,/," IVALUE:' ,618,/," RESULTS NO2171000
*0T PREDICTABLE. THIS MESSAGE WILL NOT REPEAT.') 02172000
1033 FORMAT (' FROM SECTION 18 = TRANSFER FLIGHT. IVALUE(2)= ',13, 02172100
*! IVALUE(3)= ',13) ' 02172200
1050 FORMAT (1H1,///,(2X,64A2)) 02173000
1051 FORMAT (/+38X,'BOARDING GATE FACI LITY o02174ac00
*REPORT',///) 02175000
1052 FORMAT (/:36X,'EXPRESS CHECKIN FA C1ILI To2176000
*Y REPORT',/ /) ; 02177000
1053 FORMAT(/V42X,'SECURITY FACILITY R E P O RO2178000
* T',///) 02179000
1055 FORMAT (/4+43X,'CUSTOMS FACILITY REPOR T02180000
'\ /1) ' 02181¢00
1061 FORMAT(/438X,'C AR RENTAL AGENCY F ACTI Lo2182000
*ITY REPORT',///7) 02183000
1063 FORMAT (/439X,'IMMIGRATION FACILIT Y R EQ2184000
*»PORT',///) 02185000
1064 FORMAT (/132X,'T I CKETING & CHECKIN F A C02186000
« I LI TY REPORT',///) 02187¢00
1070 FORMAT (/:35X,'S M INUTE SNAPSHOT $',//) 02188000
1071 FORMAT(1X,'CLOCK PAX ENTERING PAX LEAVING UAL EXPRESS UAL 02189000
*TICKETING BRANIFF PAX ENTERING CONCOURSE PAX LEAVING CONC02190000
*QURSE') 02190100
1072 FORMAT (1X, 'TIME TERMINAL TERMINAL PAX FLOW PA02191000

B-3-39

*X FLOW PAX FLOW',I13,614,1X,714,//) 02192000

1073 FORMAT(1X,15,111,115,113,115,114,1X,714,1X,714) : 021235000
1074 FORMAT(/,25X,'S M INUTE SNAPSHOTS OF CONG 02194000
*ESTION AT PQINTS',//) 02195000
1082 FORMAT (5X, 'CLOCK POINT') 02196000
1083 FORMAT (5X,'CLOCK TIME',10X,'UNTD COTL FRNT PRK1 SECB SECC SECD02196100
1) 02195200
1076 FORMAT (1X,'TIME 1 2 3 4 5 6 7 8 9 02197000
* 1o 11 12 13 14 15 16 17 18 19 20 21 22 02198000

%23 24',//) 02198100
1077 FORMAT (1x,14,4X,2415) 02199000
1095 FORMAT (9X,2415) 02159100
1097 FORMAT (10015) 02139200
1092 FORMAT(17X,'F A C I LI TY UTILIZATTI{ON,30X'QUE.U 02200000
“*E S TATISTICS',//) 02201000
1094 FORWAT (4x,'FACILITY NO. OF TOTAL NO. MAX. NO. OF AVG. ND.02202c00
* OF AVG. TIME TOTAL QUEUE MAX. QUEUE AVG. QUEUE AVG. 02203000
sTIME') €2204000
1096 FORMAT (4X,' NUMBER AGENTS ~ OF PATRONS AGENTS BUSY AGENTS 802205000
*USY PER PATRON ENTRIES SIZE SIZE IN QuU022cBC00
»EUE',//) 02207200
1075 FORMAT(7X,13,7X,12,7X,14,10X,12,11X,F5.2,8X,12,':',12, 11X, 14, 10X, 02208000
® 13,9X,F5.2,7X,12,':',12,/) 02209000
1078 FORMAT(///,10X,'(ALL TIMES IN MINUTES:SECONDS)') 02210c00
1079 FORMAT(/,10X,'s= INDICATES UNDEFINED (UNLIMITED) NO. OF AGENTS.') 02211000
1080 FORWAT(/,' WARNING. TITLE CARDS LIMITED TO 5. ABOVE TITLE CAR02212¢00
*D WILL NOT BE PRINTED.',/) 02213000
1081 FORMAT (8X,64A1) 02214000
1101 FORNAT(/,' ERROR. CHANGE CARD INCORRECT. RUN TERMINATED.'/ 02215000
* 110/(10110)) 02216000
1999 FORMAT(///,' *s* ERROR END #«+ - PROGRAM TERMINAOZ217000
*TING DUE TG ERROR COUNT EXCEEDING "ERRORS®".') 02218000
1087 FORMAT (2515) 02218200
1088 FORMAT (SX,14,7X,F7.2,5X,F7.2,6X,F7.2,5X,F7.2) 02218500
1089 FORMAT (16X,F7.2,5X,F7.2,6X,F7.2,5X,F7.2) : 02218€00
1090 Fonmartzx.:a.23.F7.2.2x.F7.2.2x,F7.2.2x.F7.2.2x.F7.2.2x.F7.2.2x. 02218700
XF7.2,2X,F7.2) 02218200

o] 02219000

END 02220000

B-3-40

APPENDIX B-4
ALSIM DOCUMENTATION - SUBROUTINES

B-4-1/B-4-2

L

FORTRAN Subroutine CLINK

Assembler Subroutines CLINK1l and CLINK2

PURPOSE :

These subroutines perform a linking operation, allow-
ing GPSS HELPA blocks to operate as HELPC blocks. Both block
types are used to call FORTRAN subroutines, however, when HELPC
is executed, the called subp;ogram.obtains routine access to
GPSS entities and Standard Numericai Attributes contained in the
B-through G-operands. HELPA blocks normally only provide one
way communication between the GPSS main program and the FORTRAN
subroutines.

The HELPC procedure requires GPSS to construct the
entity address argument list in a specific order each time a
HELPC block is utilized, then GPSS passes control to the FORTRAN
subprogram. This argument list is identical for all HELPC calls.
Using this linking procedure, the subroutines CLINK, CLINK1 and
CLINKZ2 store addresses of these arguments within the called
FORTRAN subpfogram and eliminate the need for constructing the
argument list repeatedly. Any HELPA call executed after use of
these subroutines provides the required access to argument values
for two-way communication between the GPSS main program and the

FORTRAN subroutine.

USAGE :
A FORTRAN subprogram using the capabilities of these
subroutines must contain a secondary entry point. The name of

this entry point must be used as a member of the data set for

B-4-3

link editing. This FORTRAN subprogram must be kept resident in
main memory during similation through use of the LOAD feature

of GPSS and loaded under the name of the secondary entry point.
The entry point name must be used as an alias to the name of the
subroutine. For example, the subroutine LINKC has an entry
point FORTM. The link edited member name would appear as LINKC
(FORTM) .

The linking subroutines described here are used to
establish the required argument list addresses of the FORTRAN
subroutine by a two step process. The GPSS program calls the
FORTRAN subroutine CLINK using a HELPC block. This is coded
as in the following example;

HELPC CLINK, 1.

Immediately following this block is a HELPA call to
the entry point of the FORTRAN subprogram requiring access to
GPSS entities and SNa values, Using the Previous member names,
an example of this HELPA call is thé followingi

HELPA FORTM, 1, 1.

The B-operand of the HELPC call may take on any value,
but must be identical to the C-operand of the HELPA block.

The purpose of using these values is to desidnate a location in
the GPSS fullword save value storage area to temporarily store
the argument list addresses.

The FORTRAN subprogram CLINK contains an argument list
constructed according to the format specified by GPSS, Addresses

of the variables used as arguments will be stored within the

B-4-4

FORTRAN subprogram LINKC and be available for reference when
the subprogram is executed through the entry point FORTM.

The following example illustrates the FORTRAN statements
required to utilize the linking subroutines. The FORTRAN sub-
program is named LINKC, as before, and contains the entry point
FORTM as shown.

SUBROUTINE LINKC (IVALUE, ISAVEF, ISAVEH, IFAC, ISTO, FSTO,

*IQUE, FQUE, ILOG, ITAB, FTAB, IUSE, IUSEF, FUSE, IMAX, IMAXB,
*IMAXH, IMAXBH, FSAVEL, IMAXL, FMAXBL)

REAL *8 FQUE, FUSE, FTAB

INTEGER *2 ISAVEH, ILOG, IUSE, IMAXBH.

DIMENSION IVALUE(6), ISAVEF(2),‘ISAVEH(2), IFAC(2), ISTO(2), FSTO(2),
*IQUE(2), FQUE(2), ILOG(2), ITAB(2), FTAB(2), IUSE(2), IUSEF(2),
*FUSE(2), IMAX(2), IMAXB(2), IMAXH(2), IMAXBH (2), FSAVEL(2),

*IMAXL(2) FMAXBL(2)

RETURN ;

ENTRY FORTM (IVALUE)

CALL CLINK2
Note that the LINKC argument list contains the B
through G-operands in IVALUE and the GPSS entity reference words,

but this subroutine'is not called directly by the GPSS program.

Instead, another FORTRAN subroutine, CLINK, is called by a
HELPC block in the GPSS program. The CLINK argument list is
identical to that of LINKC. Subroutine CLINK will call the
assembler program CLINKl to store the CLINK argument list in a
fullword savevalue area of GPSS and then return to GPSS.

After CLINK returns to GPSS, an immediate HELPA call
to FORTM results in a call to CLINK2. The assembler subroutine
CLINK2 subsequently calls LINKC. The argument addresses in
the GPSS fullword savevalue area will be transferred to the
LINKC subprogram and stored, making them accessible every time
a call to FORTM is performed. CLINK2 returns to FORTM which,
in turn, returns to GPSS. The simulation then operates with
HELPA blocks calling the secondary entry point of the FORTRAN

subprogram and performing the same functions as HELPC blocks.

RESTRICTIONS:

These subroutines were written to conform with code
internal to the DAGOS module of the IBM GPSS=V ‘program product.
Attempts to use it with other versions of GPSS may yvield un-
predictable results.

Subroutine LINKC violates the constraint that a
FORTRAN subroutine may not call itself or any other subroutine
which subsequently calls it. A FORTRAN compiler more sophisticated
than the IBM G-1, release 2.0 version may prohibit this operation.

Fullword savevalues used to store the argument list of
CLINK should not contain information for retention prior to
calling CLINK. The contents of this area are not retained by

B-4-6

any of these subroutines.

PROGRAM LOGIC:

CLINK

The subprogram CLINK contains an argument list built
by GPSS which references variables in a specified order and
which must be stored in a GPSS savevalue area. Subroutine
CLINK calls assembler subprogram CLINKl to perform this storage
operétion. After CLINKl returns to CLINK, this subroutine

returns to the GPSS main program.

PROGRAM LOGIC:

CLINK1l

This program saves all registers except 13 and
designates 12 as the base register. The GPSS save area address
is obtained from the CLINK save area by displacing register 13 by
4 bytes. The contents of GPSS reéisters l and 10 are obtained at
locations 24 and 60 bytes into the GPSS save area and loaded
into registers 10 and 11, respectively. Register 10 then contains
the address of a 25 word table established by GPSS. The starting
address of GPSS control words is found at a location 24 bytes
within this table. This address is loaded into register 10.
A displacement of 1044 bytes from register }0 contents provides
the address of the starting location of GPSS fullword savevalues.
This address is next loaded into register 10 for later use in
locating an area to store the CLINK argument list.

The GPSS argument list address was obtained from GPSS

register 1 and is now contained in register 1l1. Contents stored

B-4-7

at this address, which are the address of the B operand of the
GPSS HELPC call, are loaded into register 2. The value, N, of
the B operand is subsequently loaded into register 2 and the
contents are shifted left by 2 bits. This value is added to
the address in register 10. The resulting address used to
store the argument list then begins at a location N words into
the fullword savevalue storage area.

Addresses of the CLINK argument variables, starting
with IVALUE, are loaded into registers 0 through 9. These
addresses are stored in locations beginning at the address
indicated in register 10. Subsequent load and store instructions
pPlace the argument addresses in 21 contiguous fullword savevalue
locations.

The program executes a RETURN macro instruction to re-
store all registers except 13 from the CLINR save area, then |

branches back to CLINK.

PROGRAM LOGIC: b

CLINK2

Assembler subroutine CLINK2 is called by the FORTRAN
subprogram LINKC from a location following FQRTM, the secondary
entry point. Subroutine CLINK2 subsequently calls the FORTRAN
subprogram LINKC, which contains the entry point and the call
to CLINK2,

CLiNKZ executes the SAVE macro to store the contents of
all registers except 13 and declares 12 as the base register.

Register 1l is loaded with the address of the FORTRAN subprogram

B-4-8

LINKC, which contains the entry point and the call to CLINK2.
CLINK2 executes the SAVE macro to store the contents
of all registers except 13 and declares 12 as the base register.
Register 11 is loaded with the address of the FORTRAN subprogram
save area from register 13. The starting address of an 18
fullword save area, SAVEA, is loaded into register 13. The address
of SAVEA is stored 8 bytes into the FORTRAN subprogram save area
and the FORTﬁAN subprogram save area starting address is stored
4 bytes after the address SAVEA. The address of the FORTRAN
subprogram save area is also stored in the first word of the 19
fullword storage area FORTSAVE. The contents of the FORTRAN
save area are also stored in the remaining 18 words of FORTSAVE.
The starting address of the GPSS program save area is
then obtained from the location 4 bytes beyond the start of the
FORTRAN save area and loaded into register 11. The contents of
GPSS register 1, the GPSS argument list starting address, are

obtained and loaded into register 1 from the GPSS save area.

The address of the first argument, the B-operand, is obtained
from the location specified by register 1 an@ is loaded into
register 1. The value of the C-operand is then loaded into
register 1 from the location 4 bytes beyond’'the address of the
first argument. Register 1 contents are then shifted left by
2 bytes.

The GPSS program savevalue area is again accessed and
the contents of GPSS register 10 are loaded into register 10.

CLINKZ2 then obtains the starting address of fullword savevalues

in the manner identical to CLINK1l and places it in register 10.
The CLINK argument list address in the fullword savevalue area
is obtained by adding registers 1 and 10 and placing their sum
in register. 1.

Because CLINK2,:an assembler program, calls the
FORTRAN subprogram LINKC, a branch to IBCOM is performed to
provide a traceback capability if the program termiﬁates when
the FORTRAN subprogram is operating; Upeon return from IBCOM,
the program branches to the FORTRAN subprogram, LINKC.

The fullword savevalue storage address used for storing
the CLINK address list is contained in register 1 at this time.
The argument variables are identical to those of LINKC. When
LINKC is called, the SAVE macro is executed and this address is
saved with other register contents in the save area, SAVEA.

The FORTRAN compiler also obtains the argument list address
stored in the GPSS fullword savevalue area from register 1 and
then stores the addresses of the arguments in contiguous storage
locations within the FORTRAN subprogram LINKC. After performing
this storage function, control is passed back to CLiNKZ. The
fullword savevalue area used to store the argument list is no
longer required for that purpose and is made'zero through a
series of load multiple and store multiple instructions.

The address of the FORTRAN subprogram save area,
contained in the first word of FORTSAVE, is placed in register 11.
The contents of FORTSAVE, established by CLINK2 to store the

FORTRAN subroutine save area, are placed in the FORTRAN subroutine

B-4-10

save area. Register 13 is loaded with the addréss of the
FORTRAN subprogram save area from the second word of the
CLINK2 save area, SAVEA. The program executes a RETURN macro
to restore registers from the FORTRAN subprogram save area and

returns control to the FORTRAN subprogram.

B-4-11

CLINK

=

CALL
CLINK1

- RETURN

CLINK1

SAVE ALL
REGISTERS
. EXCEPT 13

fos l

J/

A

DECLARE
12 aAS
SE REGISTEH

N/

LOAD GPSS |
SAVE AREA
ADDRESS INT

RS

!

B-4-12

LOAD GPSS
Rl INTO R11l

/

LOAD GPSS
R10 INTO R10

/

LOAD ADDRESS OR
GPSS CONTROL WORDS
INTO R10

J/

LOAD ADDRFSS OF
FULLWORD SAVEVALUES
INTO R10

' \/

LOAD ADDRESS OF
FULLWORD SAVEVALUES
INTO R1O

!

B-4-13

LOAD B ARGUMENT
(IVALUE (1)) INTO
R2

SHIFT R2 LEFT 2 BITS

ADD R10 AND R2
TO SET SAVEVALUE
LOCATION, RESULT

IN R1l0

LOAD FIRST 10

WORDS OF CLINK

ARGUMENT LIST.
IN RO TO R9

\

STORE FIRST 10
WORDS AT LOCATION
BEGINNING AT
R10 ADDRESS

i .
.u_h/___________]
LOAD NEXT 10
WORDS INTO

RO TO R9

{

B-4-14

N

STORE NEXT
TEN WORDS AT
R10 ADDR. & 40 BYTES

v

LOAD LAST WORD
OF CLINK ARGUMENT
LIST INTO RO

STORE _LAST WORD
AT R10 ADDR. & 80 BYTES

RETURN

CLINK 2

SAVE ALL
REGISTERS
EXCEPT R13

Y {

DECLARE R12 5
AS BASE REGISTER

B-4-15

v

PUT FORTM SAVE
AREA ADDRESS
INTO RI11

/

PUT ADDRESS OF
SAVEA INTO R13

4

STORE ADDRESS
OF SAVEA 1IN
FORTM SAVE AREA

Y

STORE ADDRESS OF
FORTM SAVE AREA
IN SAVEA)

LN V4

T

STORE ADDRESS
OF FORTM SAVE
AREA IN FORTSAVE

V.

PUT CONTENTS OF
FORTM SAVE AREA
IN FORTSAVE

B-4-16

\\/

r

LOAD GPSS SAVE
AREA ADDRESS
INTO R1l1l

WV

LOAD GPSS R1
CONTENTS (IVALUE
ADDRESS) INTO R1

\

LOAD IVALUE(2)
INTO Rl

A V4

Y ¥

SHIFT Rl LEFT
2 BITS

L

LOAD GPSS R10
INTO R10

LOAD ADDRESS
OF CONTROL WORDS
INTO R10

LOAD ADDRESS
OF FULLWORD
SAVEVALUES INTO RIO

{

B-4-17

ADD R1 AND RI1O0
FOR START ADDRESS

OF CLINK ARG.LIST
IN FULLWORD SAVEVALUE

AREA RESULT IN Rl

NL

LOAD ADDRESS OF
IBCOM INTO R15

\/

BRANCH TO IBCOM
AND RETURN

LOAD ADDRESS OF
LINKC INTO R1S

BRANCH TO LINKC

ZERO R2 THROUGH R6

o s . e o 5 s

J

w

|

| 2ERO FULLWORD SAVEVALUE
iAREA CONTAING CLINK

ARG.LIST

|

| v

‘B-4-18

N’

LOAD ADDRESS OF
FORTM SAVE AREA
FROM FIRST WORD OF
FORTSAVE 'INTO R11l

Y

STORE CONTENTS
OF WORDS 2-18
OF FORTSAVE IN
FORTM SAVE AREA

i

LOAD ADDRESS OF
FORTRAN SAVE AREA
INTO R1l3 FROM
SAVEA + 4BYTES

-

RETURN

B-4-19

0001Z000 aN3

00002000 1'(Zr'p1) NNN13Y
00061000 . (o1)os’o 15
00081000 (11)o8°‘0 R}
00011000 (ot)ov‘s'o Wis
00091000 (tt)ov's'o 'l
00051000 (ot)o's'o Wis

000b 1000 . (11)o's‘o Wl
0D00£1000 z'ol 14
00021000 c'e vis
00011000 _ (1)3anval (z)o'z 1
00001000 INIVAL (t1)o'e 1
00060000 V3IY¥Y 4% (oL)vvot ‘ol hi
00080000 (ot)vz'ol 1
00020000 01y S5dD (s)os‘ol)
00020000 14 §54D (s)vz'it 7
00050000 (e)v's I
00050000 ci'x DNISH
000€0000 - 0'21 ¥ve
00020000 *'*(Z1'PL) 3Avs S
00040000 0 1¥VIS 1MNITD

LANITO 3WYN ¥3awaw

00011000 zz:mum
00001000 pngiay
00060000 , BINITO 1

00080000)78XYWA ! (Z)IXYINT ' (Z)13AVSS (ZIHEXVWI ' (SIHXVWI* (Z)aXVYWI ' (Z)XYWI*

000L0000 .vammnu.auvummau.vammaa.ﬁwum<hm.Au.m<hu.A«.ooqu.Auvm:om.A«,mnoH*
'(

: '(2)ovd1° (ZT)H3AVYST "(Z)43AYSI* (9)INIVAI NOISNIWIQ
00090000 g)oisd’(T)oist s R LR R

mmwwwwww HEXVII'3ISNI ‘D071 'H3IAVST wfmuouhZM
000EQCO00 (18XVIND * IXYANT '+

000Z0000T3AVSS 'HEXVIWI ‘HXVWI ‘GXVWI *XYWI‘ISNd* 43SNT*2SNI°'avi4'aviI‘ooll ' Ind4s

-00010000 'INOI'0LS4'0LST OVATI *HIAVST * 43AVSI 'INTVAI)NNITD INILNONENS

MNITD 2WVN HIgwaw

B-4-20

00092000
00052000
000¥Z000
000EZ000
000€Z000
00012000
00002000
00061000
00081000
00041000
00031000
00051000
000t 1000
000E1000
00021000
00011000
00001000
00060000
00080000
000L0000
00090000
00050000
0000000
000€EQ000
00020000
00010000

JMNITAY 'S1

(s1)bs'pl

(#wp281)A="5I

¥aay 1SI7 9yv oL'l
vy 4X (ot)vrotr ol
(oL)pz'ol

01y SSd9 (Lr)os‘ol
z't

(z)anval (Vv
INTVAL (1)o°t

t4 SSd9 (11)ve‘s
(1)p'it

oF+3AVSLI¥D4 ‘01’2

(t1)og‘olL’z

P+IAVSLINOL‘01 T

(11)o‘ol‘e

IAVSI¥OL ‘ b}

(NIVHO) 3AVS 1304 W4 (EVP 11
(NIYHD) 2AVS l¥0d 01 (r1)s'ei
IAVS TUNITD V3AVS‘EL

€141

Th's

o'zt

't (TLPL)

INNIT

0

e

Wis
Wl
Wis
W1

18

1s

18

vl

ul
ONISN
yiva
JAVS
NY1X3
14VI1S

THNITD

CHNITD 3IWVYN H3IBW3IW

B-4-21

0008000
000Lt000
00094000
0005000
000000
Q00EL000
000Zt000
0001000
0000000
0006€000
0008€£000
0002€£000
0009€000
000GE000
000¥€000
000EE000
0002£000
000LE£000
0000£000
00062000
00082000
000L2000

aN3

(OMNT)Y 2a
481 sa

361 sa
1°(2y'v1) NiNL3Y
b4+Y3AYS ‘EL 1
(t1)oc’ol’s WlS
Ov+3AVSINO4'01L'Z w1
(t1)oot*z WIS
P+3AVSI¥04'01°2 w1
IAVSIHOS "L L Rl
(1)os‘z 1s
(L)og‘e‘'z Wis
(l)ov'e‘z WIS
(t)oz*9’'z wis
(1)o'9'T Wis
z'e 1.

z's R

Ty ¥l

z'e |

z'e Ms

Si'tl ylve

IMNIQY
Y3AVS
IAVSL1H04

B-4-22

ASSEMBLER SUBROUTINE MNLINK

PURPQSE:

This subroutine provides a method for passing numerical
values of GPSS-V mnemonics used in the Airport Landside simulation
model to supporting FORTRAN subroutines during program execution.
This feature allows development of FORTRAN subprograms in-
dependently without reference to absolute values assigned by the
operation of GPSS-V. Data for output under FORTRAN format control
is also passed from GPSS-V through mnemonic linking. Types of
information transmitted are: savevalues, GPSS entity identifiers,
numbers of columns of halfword matrices and GPSS program locations.

USAGE:

An explicitly numbered GPSS-V list function containing
mnemonics to be passed must be established after the last mnemonic
referenced. A FORTRAN CALL statement to MNLINK must contain the
absolute function number as the first argument. The remaining
arguments are positionally identified with GPSS mnemonics
appearing on the list as Y values. It is desirable, though not

necessary, to use similar or identical arguments and Y list names.
The lists may be expanded indefinitely.

The list function is placed near the end of a GPSS-V
program, as illustrated in the following example:

1l FUNCTION PH1l, L4

, CMHOl/,. CMHO2/, CMLO2/, CLKXH
START 1,,,1

END

A HELPA or HELPC block transfers control to the FORTRAN
subprogram. Generally, the mnemonic link is activated by the
first FORTRAN call of the simulation. . Contained in the FORTRAN
instruction set is the call to MNLINK, as shown:

CALL MNLINK(l, CMHOl, CMHO4, CMLO2, CLKXH).

The numerical value 1 of the first argument is in
agreement with the GPSS-V identification number of the list
function. After the return from MNLINK, FORTRAN argument names
appearing in the CAL statement have the absolute values of

GPSS-V names appearing in corresponding positions of the
function.

B-4-23

RESTRICTIONS:

l. All member names of the argument list must
be FORTRAN fullword integers.

2. Mnemonics appearing in the list function
must be unique names, i.e. each mnenomic must be used for
only one purpose.

: 3. The FORTRAN calling program must be kept
loaded with the GPSS program during the simulation or
MNLINK must be called each time the FORTRAN subroutine
is loaded.

4. The subroutine was written to conform with
code internal to the DAGOS5 module of IBM GPSS-V,.

Attempts to use this assembly program with other versions
of GPSS-V may yield unpredictable results.

PROGRAM LOGIC:

The MNLINK subroutine executes the SAVE macro to retain
contents of all registers except 13 and specifies 12 as the base
register. The FORTRAN save area address is obtained from register
13. The second word of the area contains the address of the
GPSS-V save area and is loaded into register 10. From the GPSS
save area, contents of GPSS registers 2 and 3 are placed in the
correspcnding program registers. Contents of GPSS registers 10
and 11 are also loaded into MNLINK registers 10 and 11. This
is performed to locate a GPSS 25 word table and to allow entry
into the GPSS subroutine UNFLOT. In addition, register 14
contents are made 4096 greater than those of register 2 as
required for entry into GPSS routines.

_ The 25 word table established by GPSS, with a starting
address in register 10 contains the starting address of UNFLOT.
A displacement of 80 bytes into the list points to the starting
address of the UNFLOT routine. This address is placed in reg-

ister 7 and subsequently in the fullword storage defined as
UNFLOT. '

. The address of GPSS control words is contained in the
table at a displacement of 24 bytes. These control words provide
the starting address of GPSS entities. A displacement of 1052 bytes
in the control word area provides the starting address of
functions. Register 10 is loaded with this address.

B-4-24

The number of the function is the first entry of the
FORTRAN argument list and is located at the address contained
in register 1. The function number stored at this address is
loaded into register 6.

Because each function occupies 32 bytes, apart from
Y values, a left shift of the function number in register 6
by 5 bits allows indexing of the function addresses. After
the left shift, the required list function address is located
by adding registers 6 and 10. The number of points or mnemonics
is located 12 bytes into this function area. The value at this
address is placed in register 6. The starting address of Y
values is contained in the first byte and is loaded into register
10.

A value of four is stored in register 7 to increment
registers 1 and ‘10 through the respective argument list and Y
value addresses. Register 1 is pointed to the second word
of the argument list. Register 2 is established as a floating
point register and the contents are zeroed,

A loop to process the word list begins at the address
NEXTPT. Register 4 is first pointed to the address of the
second word of the argument list and register 2 is loaded with
the value of the first Y point. The GPSS subroutine UNFLOT is
called to convert the floating point Y value of the list function
contained in register 2 to an integer.

The integer portion of the value returned by UNFLOT
is contained in register 8 and the fraction portion in number
9. The value in register 9, being zero, is ignored. The
register 8 result is stored in the argument list location
specified in register 4. Thus the absolute values of the
entities contained in the link function are stored in the
MNLINK argument list locations for later reference.

The subroutine tests for the end of the argument list,
If another mnemonic is to be linked, registers 1 and 10 are
incremented by 4 bytes. The list function length is decre-
mented by one in register 6 and compared to zero. If register
6 is greater than zero, the brogram returns to NEXTPT where
register 4 is pointed to the next address in the agrument
list, and register 2 is loaded with the value of the next Y
point. If register 4 has a negative sign bite, indicating the
argument list end, the program restors the general registers
and returns to the FORTRAN calling location.

B-4-25

MNLINK

SAVE
REGISTERS

[
=

L4

USE 12
AS BASE
REGISTER

]
GET ADDRESS:

OF GPSS
SAVE AREA

14

LOAD R2, R3
R10, R11 WITH
CORRESPONDING GPSS

|

REGISTER CONTENTS
]

i ‘L .

LOAD R14 WITH
R2 4 4096

|
¥

GET "AND STORE
ADDRESS AND
UNFLOT
ROUTINE

¥

PLACE ADDRESS
OF GPSS
CONTROL WORDS
IN RIO

!
(3
~——"

B-4-26

A

| il

PLACE LOCATION!

DOF FUNCTIONS
IN R10

""I"

et

GET ADDRESS OF
FUNCTION NO. FROM
Rl, PLACE IN R6

[
s

LOAD FUNCTION
NUMBER INTO
R6

22

INCREMENT R10 \
BY FUNCTION NUMBER*32 '
TO LOCATE LIST FUNCTqu

|
i3

GET NUMBER OF
POINTS AND ADDRESS
OF Y VALUES

v

SET POINTER
TO FIRST
ARGUMENT

-
A4

i
i

DEFINE R2 AS
FLOATING POINT
REGISTER AND ZERO
CONTENTS

|
v
/B '
\

.

B-4-27

'~ LOAD R4 WITH
.ARGUMENT STORED |
IA’I‘ ADDRESS IN R1 |

I

- LOAD Y VALUE INTO o . _ ______ ——
R2 i

I

NEXTPT

v R2

|
BRANCH TO UNFLOT

\
UNFLOT '4

; z

STORE INTEGER

VALUE IN RS AT |

LOCATION OF =
ARGUMENT ‘ -

B-4-28

UPDATE ARGUMENT

POINTERS

=

LIST AND Y VALUE

|
|'

|

- NO

END

OF
FUNCTION
LIST?

RETURN

B=d-

29

o sasTagr yay
HE58 - AR R b b o |

e bt e

0009£000
000SE000
0005£000
000E€000
000Z€000
0001£000
0000€£000
00062000
00082000
0002000
00092000
00052000
0002000
000£2000
00022000
00012000
00002000
00061000
00081000
000L1000
00091000
00051000
000V 1000
000€1000
000Z1000
00011000
00001000
00060000
00080000
000L0000
00090000
00050000
00050000
000£0000
00020000
00010000

B 5 anN3
- 31 sa
(Zt'v1) Nunlay
1diX3IN‘g 1208

HIINIOd NOILONN4 3Lvadn L'ot yy
H3ILINIOd 1SIT Dyv 3ivadn L'y Yy
N¥Ni3¥ HNE

1S17 28V 40 aGN3 1S3l o't ¥o
(t)o's 15

5i's yva

1074NN ‘51 1

INTVA NS (ot)o‘e EN|

¥davy 9¥Y 11vd Ly¥04 LAX3IN Ol LINIOd (1)o‘w 3|
z'e uas

L' yvy

r'L v

S3aNTVA-A 40 yaav (ot)o'ol]

SINIOd 40 ON (oi)zl'e H

. v3Y¥Y N4 0L SINIOd Oy 9'o0l Y
(0)s‘9 vis

ON N (9)o'g 1

(1404) ¥agv ON N4 (1)o'o g
(ok)zsot ol 1

(ot)vz'ol 1

10734NN‘L 158

INILNOY 10T4NN 40 yaav (o1)o8°2 1
19600, 4="b1 v

T'vi]

(ok)og‘11'0l W1
(oL)gz‘e'e Wl

(e1)v'ot]
o‘o ¥s

TL'* DNISN

- 0'ZL WHlva
**'(21'PL) 3Avs
0 lyvis

1074NN
Nuni3y

1d1X3N

ANIINW

B-4_30

Assembler Subroutine XCODE

PURPOSE :

This subroutine permits FORTRAN programs to perform
in-core read and write operations. XCODE provides the
capability for rereading input dataland is similar in this
respect to the READRE routine avai;able at many 360,/370
installations. However, because it operates on arrays in
main storage instead of on I/0O bufférs, flexibility may be
attained in performing reformatting operations. A particular

example of this application to NAMELIST data is used in the

Airport Landside Simulation Model.

USAGE:

Subroutine XCODE requires the designation of a data
set reference number and an array to act aé a buffer area.

The data set mus£ not be identified by a DD card. The buffer
area array must be large enough to accomodate §ll read or r
write operations involving the designated data set.

XCODE must be called prior to each ;ead or write
operation involving the designated data set. The calling
statement has the following form: '

CALL XCODE (array name, length of I/0 operation in bytes).

The following example illustrates a use of XCODE,

An 80-columnh data card is read under an A format into the array

ICARD. The characters are subsequently written into the array,

BUFFER, and reread from this array under a NAMELIST format.

B-4-31

Character data is used to test for data card tYpe and to

place the NAMELIST special form.characters at the beginning
and end of the record. Two card types, PARM and AIRLINE,

are shown in this example. For each of these, a call is made
to XCODE with the arguments BUFFER and buffer size 80, After
the return to FORTRAN, % WRITE statement places the ICARD data
into the BUFFER array.

A subsequent call is made to XCODE with BUFFER and 84
as the array and buffer size arguments, respectively. The
ensuing READ statement uses the 21 words of BUFFER to perform
_ @ NAMELIST read operation. Device 10 is not specified by a
DD statement. .

DIMENSION ICARD (20), BUFFER (21)

DATA NAMEPA, NAMEAL, NAMEND/' &PA', ' &AL', '&END'/

DATA IPARM, IARLIN, IBLANK/'PARM', 'AIRL', v/

NAMELIST/PA/BOARDT, GREET, WWGATE, GRGATE, CRBCHK

NAMELIST /AL/LINES, EPCURB, BUSTOP, EXPCHK

BUFFER (21) = NAMEND

101 READ (5, 1000) ICARD
1000 FORMAT (20 a4)
IF (ICARD (1). EQ. IPARM) GO TO 1

IF (ICARD (l1l). EQ. IARLIN) GO TO 2

.
-

1 ICARD (1) = NAMEPA

CALL XCODE (BUFFER, 80)

B-4-32

WRITE (10, 1000) ICARD
' CALL XCODE (BUFFER, 84)
READ (10, Pa)

-

2 - ICARD (1) = NAMEAL

ICARD (2) BLANK

CALL XCODE (BUFFER, 80)

WRITE (10, 1000) ICARD

CALL XCODE (BUFFER, 84)

READ (10, AL)

Input data cards for tbis example are shown below.
Card identifiers do not require the NAMELIST special form,
but only the literal symbols PARM and AIRLINE. Data items
are treated as keyword pﬁrameters using variable names identified
by NAMELIST statements. A blank separates card identifiers and
other symbols. Columns 1 through 80 aré available for card
identification plus data.

PARM WWGATE = 19, GRGATE = 12, GREET = 43

AIRLINES LINES = 1, EPCURB = 3, EXPCHK = 70

PROGRAM LOGIC:

XCODE
The subroutine declares 15 as the base register and
saves regisfers 14 through 3 in the FORTRAN calling program
save area. The addresses of the two calling arguments are obtained

from the argument list address contained in register 1 and

B-4-33

loaded into registers 2 and 3 respectively. The value of the
second arggment, the buffer size, is obtained from the address
contained in register 3 and placed in that register. Register

2 contains the starting address of the array BUFFER. The contents
of registers 2 and 3 are stored in thé 2 fullword storage area
BUFFADDR.

The program then places the entry point address
XCODE2 in register 1, the address CLOAD in register 3, and
branches to CLOAD. Register 3 is declared the base register
and the address of IBCOM is placed in register 15 to satisfy
base register requirements in IBCOM. The program Places a
hexidecimal 50 in the location 74 bytes within IBCOM thereby
changing the IBCOM instruction;.

L 1,VFIOCS
to become, ST 1,VFIOCS

The program executes the second instruction and
stores XCODEZ2 at the address VFIOCS. The LOAD instruction is
restored with a second MOVE IMMEDIATE instructiﬁn. XCODE
proceeds back to the branch instruction where it restores
registers 14 to 3 from the save area, zeroes'out register 15
and returns to the FORTRAN subprogram. '

The next FORTRAN WRITE or READ instruction is processed
by IBCOM. At some point during IBCOM execution, a branching
to the address contained in VFIOCS results in a branch to
XCODE2 because of the previous substitution.

At XCODE2 contents of register 4 are saved at SAVEAREA.

B-4-34

The address of XCODE2 is loaded into register 4 from register
1. Register 4 is declared the base register.

Register 0 contains an address constant from IBCOM.
This value is loaded into register 1. Contents of storage one
byte beyond the location indicated by register 1 are tested
by a test under mask instruction. If the pass through the
XCODE2 section arises from a FORTRAN WRITE statement, branching
to location OUTPUT is executed. At this location, register 2
is loaded with the starting address of BUFFER bytes to be
written onto. The first byte of BUFFER is blanked by a hex '40',
Subsequent bytes are blanked by decrementing register 3 twice
and executing the MVC instruction at DMOVE. This operation is
performed on the array BUFFER, up to a limit of register 3 con-
tents plus one times. Register 3 is then incremented by two to
again contain the number of BUFFER bytes spécified for writing;
At RETURN, the program restores register 4 and places the IBCOM
arguments in register l.'A branch to 6 bytes beyond register 1
contents returns control to IBCOM, where writing of input data

into BUFFER is completed.

A FORTRAN READ statement also causes branching to
XCODE2 from IBCOM. However, the program does not branch to
OUTPUT. Instead, the program loads the address of FIOCS into
register 1 and the address of CLOAD into register 3. XCODE
branches to CLOAD and declares register 3 as the base register.
The address of FIOCS is restored to IBCOM by performing the

instruction at CLOAD and subsequent instructions.

B-4-35

Following this replacement, the Program branches
back to place the two fullwords in BUFFADDR into registers
2 and 3. The Program branches to RETURN and subsequently
returns control to IBCOM for execution of the in-core reagd

-

under namelist format control.

B-4-36

XCODE

SAVE REGISTERS
R1l4 THROUGH R3

\

LOAD BUFFER START
AND SIZE ADDRESSES
INTO R2 AND: R3

LOAD BUFFER
SIZE INTO R3

STORE BUFFER
ADDRESS AND SIZE
AT BUFFADDR

LOAD ADDRESS
OF XCODE2 INTO Rl

/

LOAD ADDRESS OF
CLOAD INTO R3

B-4-37

J/

BRANCH TO R3
ADDRESS, PUT
ADDRESS OF NEXT
INSTRUCTION IN R2

%

RESTORE R14
THROUGH R3

y

ZERO R15

RETURN TO
FORTRAN

B-4-38

XCODE2 | SAVE R4 AND |
DECLARE AS |
BASE REGISTE?

IS
IBCOM -
EXECUTING A

QUTPUT

|

LOAD ADDRESS
OF FIOCS
INTO Rl

T rp—

LOAD ADDRESS:
OF CLOAD |
INTO R3 |

|

ERANCH TO ;
ICLOAD RETURN |
‘TO NEXT
|INSTRUCTION

)

B-4-39

N

LOAD BUFFER
ADDRESS, SIZE
INTO R2, R3

L/

BRANCH TO
RETURN

S LOAD BUFFER

ADDRESS, SIZE
INTO R2, R3

/[

'BLANK FIRST.
BUFFER BYTE

SUBTRACT TWO
FROM R3

EXECUTE MVC
TO BLANK BUFFER

v

B-4-40

RETURN

l

RESTORE R3 TO
BUFFER SIZE

)

RESTORE 4

LOAD IBCOM
ARGUMENTS FROM RO

INTO R1
N

RETURN TO IBCOM

B-4-41

CLOAD STORE CONTENTS OF

R15 IN 2ND WORD
OF SAVE AREA

\

LOAD ADDRESS
OF IBCOM
INTO R15

)V

CHANGE LOAD TO
STORE INSTRUCTION
IN IBCOM & 74 BYTES

\Y

STORE XCODE2 ADDREé;
AT VFIOCS IN IBCOM [

|

e N4

RESTORE LOAD
INSTRUCTION IN
IBCOM + 74 BYTES

BRANCH TO
R2 ADDRESS

B-4-42

000EE000
000TE000
0001£000
0000£000
00062000
00082000
00042000
00092000
00052000
0002000
000€2000
00022000
00012000
00002000
00061000
00081000
00021000
00094000
00051000
0001000
000€ L1000
000Z1000
00011000

00001000

00065000
00080000
000L00Q0
00030000
00050000
0000000
000E0000
00020000
00010000

. NYn 1IN -]
yaavding*e'e Wl
£'T ¥lva

avold’e . vl
§J013uQV‘t h|

1nd1no 08
1320, (1)8 Wi
04 |

I dO0u0

p*23003X DNISN
L't 41
VIUVIAVS b 1s
1'% DNISN

gL d0¥a

vi us

-1 -] s
(eV)Ti'e'vtL Wl
€'z yive
avolo‘e Vi
z3aoox't V1
yaagvidng‘e'cs WS
(e)o'e Al
(L)o‘e'e Wl
(e1)zi'e'vr WIS
y 3002%,910 aa
100000020, ¥1X 2a
pL+s]

Sl's ONISH
#S0014 NHLX3
#WO081 N¥LX3
3000X ANLINI

0 1¥VLS

€3002X

300X

#3002X

3000% IWVN HIGWIW

B-4-43

0095000

00055000
000r5000
000ES000
00025000
00015000
00005000
00065000
0008%000
000LH000
0008000
0005000
000FP0O00
000EL000
000Z%000
0001000
0000v000
0006E000
000BEDOO
000LEOOO
0009€000
000SE000
000r£000

. (#s2014)V
(#w0081)Y
de
4z

z
p+YIYYIAVS ' S)
188 (X' (1)L
(st)vL'o
106X (S))pL
wooa1yav sl
p+YIUVIAVYS ‘SE
E'n
(z)o'(z'0)
(1)o

v

0’1
Y3IHVIAVS b

o’c
10, X (2)0
¥yaavidng‘e'z

an3
20 SODIduaY
20 WOd8I1yaY
SQ Y3IYYIAVS
Sa ¥aavd44ns
ug
3
IAW
X3
1AW
B
18 avolo
ONISN
AN 3A0Wa
g
d0ua
-4}
7 N¥N13y
A
X3,
¥108
4108
1AW
Wl 1nd1ino

B-4-44

FORTRAN FUNCTION - MHBASE,/MXBASE/MLBASE

PURPOSE:

These functions provide the base addresses of GPSS-V half-
word, fullword and floating point matrices used in the FORTRAN
section of the airport landside simulation model. Computed
base addresses are used by FORTRAN statement functions to
compute addresses of GPSS-V matrix elements for data insertion
and extraction. The use of this function or a similar algorithm
for referencing GPSS matrices by 2 FORTRAN program is neces-
sitated by the incompatibility cf GPSS internal storage with
the FORTRAN array structure. This subprogram and associated
FORTRAN statement functions permit addressing of program
matrix elements by row and column symbols.

USAGE:

This subroutine is link edited with the primary name MHBASE
and aliases MXBASE and MLBASE. The only calls to this
function occur on the first HELPC call from GPSS. Each
matrix requires a separate call with the following syntax:

MHBASE (IMAXH,
FORTRAN variable = MXBASE (IMAX, Matrix No., No. of cols.)
MLBASE (IMAXL, }

Variables IMAXH, IMAX and IMAXL are arguments passed from GPSS
when a HELPC call is made. The matrix number is specified
explcitly for each call to the function. The number of cclumns
is initially specified in the GPSS program by an SYN statemént.
The GPSS symbol used in the statement is identified with the
FORTRAN variable representing the number of columns in the
matrix by the mnemonic link function. The value assigned to
the GPSS symbol must agree with the number of columns specified
in the GPSS matrix ‘definition statement.

As an example, a matrix to be utilized in the simulation is
halfword matrix number 2, consisting of 15 rows and 7 columns.
The number of columns is identified with thé symbol CMHO2 by
the following GPSS SYN statement: ,

CMHO2 SYN 7 NO. OF COL - MH2

The GPSS matrix definition statement establishing halfword
matrix 2 is the following:

2 MATRIX ME , 15, 7

B-4-45

The mnemonic link function must contain a reference to CMHO2;

éM§g§C3ION PH1, L 20 MNEMONIC LINK FUNCTION, CMHO1, /CMH0O2,/
. 1/ o e e - .

A positional correspondence between CMHO2 and the variable
ICNHOZ2 is established by the FORTRAN call to ‘MNLINK

CALL MNLINK (1, ICNHOl, ICNHO2, ICNHO3,)

The call to MHBASE to establish the base address of MH2 is
illustrated by the following FORTRAN statement:

MHO2B = MHBASE (IMAXH, 2, ICNHO2)

This base address is used by the following FORTRAN statement
function to calculate the address of the element in the IR row,
IC column of halfword matrix 2. -

MH2 (IR, IC) = MHO2B + ICNHO2*IR + IC
RESTRICTIONS:

Standard mnemcnics and indexing constants used in coding HELPC
routines are used in this function. This subprogram reguires
that versions of GPSS-V used for simulation contain these con=
ventions.

PROGRAM LOGIC:

The subprogram name MHBASE is used to designate this function.
The calling argument IMAXH is dimensioned 1 as are IMAX and
IMAXL. The base address MHBASE of halfword matrix N is :
calculated by the following expression:

MHBASE = IMAXH (6*N-5)/2 - ICN - 1

The variable ICN represents the number of columns in halfword
matrix N.

At entries MXBASE and MLBASE, base addresses of fullword and

floating point matrices respectively are calculated using ex-
%ressions of the same form, After each base address calcula-

iothhe program returns to the calling FORTRAN subprogram.

B-4-46

.

FUNCTION MHBASE (IMAXH,N,ICN)

COMPUTE
MHBASE

¢

| RETURN

ENTRY MXBASE (IMAX,N,ICN)

COMPUTE
MXBASE

v

RETURN]

~ ENTRY MLBASE (IMAXL,N,ICH)

|
l
|

COMPUTE
MLBASE

v

RETURN

B-4-47

00091000
00051000
000 t000
000€ 1000
00021000
06001 L0000
00001000
00060000

00080000

000L0000
00090000
00050000
0000000
000£0000
00020000
00010000

*3SYETIW ONV JSYEXW 40 S3ISVITY QINDISSY 38 ISnW

ﬁ_v4x<s

. N3
CEOTEE]

b=NOI-t/(S~N+9) IXVYWI=3SVEIN
(NOI'N'IXYWI)ISVETW AMINT

N¥N1ITY
1-NJI-b/(S~N+9) XVIWI=3SVAXN
(NOI'N‘XVYWI)ISVEXW AMINT

o . Nyni3y
1=NOI-Z/(5-N+9) HXVWI = ISVEHN

I*(L)HXVIWI' (L)XYWI NOISN3IWIQ
(NOT°N'HXYIWI)3ISYGHN NOILINAA

J
J
3

ISVEHA 3WvN Y3aw3w

B-4-48

ASSEMBLER SUBROUTINE ASSIGN/LOGIC/PVAL/FPVAL

PURPOSE ;

This subroutine allows a FORTRAN subroutine called
by a GPSS-V HELPC or HELPA block to perform the function of
the GPSS ASSIGN block. Furthermore, this subroutine executes
the set and reset functions of the GPSS LOGIC block and obtains
parameter values directly from the.currently active GPSS trans-
action. This subroutine is called by the FORTRAN subroutine.

USAGE:

This subroutine must be link edited with the name
ASSIGN and aliases LOGIC, PVAL and FPVAL. The FORTRAN sub-
routine ARGERR must be a member of SYS1. FORTLIB or in a user
library concatenated with SYS1l. FORTLIB at link edit time.

. The calling FORTRAN subprogram must contain the follow-
ing statements:

INTEGER * 2 LR, LS, PB, PF, PH, PL

INTEGER PVAL ’ '
DATA LR, LS, PB, PF, PH, PL/'LR', 'LS', 'PB', 'PF', 'PH',
. 'PL'.

During the simulation run, the.active GPSS transaction
calls the FORTRAN subprogram through a HELPA or HELPC block.
Parameters of that transaction are assigned values by using
the followipg call statements in the FORTRAN subprogram;

CALL ASSIGN (parameter number, FORTRAN variable or
constant, parameter type).

Multiple assignments and mixed parameters are valid.
This is exhibited in the following example;

CALL ASSIGN (1, 10, PH, 3, XRAY, PL, 1, IVAL, PF, 5,
3, PB).

When a logic switch requires a set or reset condition,
the FORTRAN program executes the following subroutine call;

CALL LOGIC .(logic set (LS)/logic reset (LR), switch
number)

Multiple sets and resets and mixed types are valid, as

B-4-49

shown in the following call statement:
CALL LOGIC (LS, 1, LS, 3, LR, 4).

When a parameter value of the active.transaction is
required, the FORTRAN program uses the functions PVAL or FPVAL.
The statements used to obtain this value for integer parameters
are:

FORTRAN variable = PVAL (type, parameter number),
For floating point parameters, the value is obtained
by using FORTRAN variable = FPVAL (PL, parameter number)

The valid PVAL function parameter types are PF, PH, or
PB. Floating point parameters, PL, are evaluated by FPVAL.
Only one parameter may be referenced in a statement. The
following example returns the value of PH 10 to K:

K=PVAL (PH, 10).

An equivalent floating point example returns the value
of PL5 to XK:
XK=FPVAL (PL, 5).

Errors in the argument lists of ASSIGN, LOGIC, FPVAL
and PVAL cause branching to subroutine ARGERR, where statements
indicating the problem nature are written. - Upon return from
ARGERR, the subroutine with the faulty argument list executes
2 no-op return to FORTRAN without interrupting the simulation.
Three errors are recognized:

(1) An invalid parameter type referenced in calling
ASSIGN, PVAL or ‘FPVAL,

(2)* An invalid switching operation specified in a call
to LOGIC

(3) An attempt to assign a negative number to.an integer
parameter when calling ASSIGN. |,

RESTRICTIONS:

This subroutine branches to code internal to IBM GPSS-V
in performing these functions. Use of any other system may
produce unpredictable results from this subroutine.

PROGRAM LOGIC ASSIGN:

The program declares the aliases PVAL, FPVAL and LOGIC
as entries at this subroutine. all registers except 13 are

B-4-50

saved and 12 is declared the bace register for this subroutine.
The save area address of the GPSS-V main program is obtained
from the FORTRAN calling subprogram save area at the address
contained in register 13 plus 4 bytes. Registers 2, 3, 10, and
1l of ASSIGN are loaded with the contents of the corresponding
GPSS registers.

The constant stored at STPVAL is tested for zero to
determine if ASSIGN has been called previously. A non-zero
value causes branching to ASSIGNGO. For the zero value con-
dition, the program obtains the addresses of the GPSS-V sub-
routines STPVAL and PRVAL. These addresses are stored at
locations STPVAL and PRVAL respectively.

At ASSIGNGO, register 14 is loaded with contents of

register 2 plus 4096 to fulfill a condition required for
operation of STPVAL.

Register 10 is loaded with the address of GPSS-V
control words from a 25 word table established by GPSS when
the FORTRAN subprogram is called. The control word address
will be used later to locate the number of the transaction
currently being processed. Register 9 is loaded with the
starting address of STPVAL.

Program location NEXTASGN is the beginning of a 'loop
for processing the ASSIGN argument list. ‘Register 1 initially
contains the starting address of this list. Locations of the
first three entries, which are parameter number, value and
type, respectively, are loaded into registers 6 through 8.

The address of the third entry is retained in register 0.
Contents stored at the addresses contained in registers 6, 7,
and 8 are loaded into these three respective registers.

A ‘test for a floating point parameter is performed by
loading the character stored at PL into register 4 and comparing
this with the parameter type contained in register 8. The
program branches to ASGNFLOT if a floating point parameter is
present. ,
Before testing integer parameters for type, a test of
the value to be assigned is required, because fixed point con-
stants in GPSS block statements must not be negative. A test
is performed on this value, which is contained in register 7.

If a negative quantity is found, the program branches to NEGASSGN.

When the value is zero or positive, as normally expected,
tests for halfword, fullword or byte parameters are performed by
loading the characters stored at PH, PF or PB into register 4 and
comparing thiese with the contents of register 8. The program
branches to ASGNHALF, ASGNFULL or ASGNBYTE for each respective
character type.

B-4-51

If none of the above three parameters are present
in register 8, an error condition is recognized. The program
pPlaces a value 1 in register 8 and continues to ASGERRET to
begin an error indication procedure and subsequent return to
the FORTRAN calling program.

This procedure requires branching to the subprogram
ARGERR. At ASGERRET, the address of the FORTRAN calling pro-
gram save area is loaded into register 10 from register 13.
An ASSIGN save area of 18 fullwords starting at location
SAVEAREA is defined. Register 13 is used as a linkage register
and is loaded with the address of SAVEAREA. This address is
also stored in the third word of the FORTRAN calling program
and the address of the FORTRAN calling program is stored in the
second word of SAVEAREA.

B-4-52

The error code value 1, contained in register 8, is
stored at ERRCODE for use in the argument list when ARGERR 1is
called. The address of the argument list ARGLIST, is loaded
into register 1, the argument list linkage register, and the
program branches to ARGERR. Upon return to ASSIGN, the add-
ress of the FORTRAN save area at SAVEAREA + 4 is loaded into
register 13. Contents of registers 2 through 12 are restored
to values contained when the FORTRAN subprogram called ASSIGN.
The program branches back to the calling locations in the
FORTRAN subprogram at the address contained in register 14.

For those parameter values previously tested and
found to be negative, the program branched to NEGASSGN. AT
this location an error code value of 8 is loaded .into register
8. The program then branches back to ASGERRET to begin the
error return procedure.

At ASGNHALF, ASGNFULL and ASGNFLOT, register 4 is
loaded with the respective hexadecimal constants, 10000000,
0C000000 and 04000000, and a branch to MASKOP is executed. At
ASGNBYTE, register 4 is loaded with the hexadecimal constant
08000000. The program continues to MASKOP.

The STPVAL entry conditions for register 6 are ful-
filled by the OR statement at MASKOP. The transaction number
is placed in register 8 and the program branches to STPVAL.
Upon returning to ASSIGN, the program tests for the last ar-
gument list 'entry by examining the address stored in register
0 for a negative sign bit. If the end of the argument list
is present, the program branches to RETASSGN.

The program continues processing the argument list by
adding 12 to the contents in register 1 and branching back to
NEXTASGN. -

At RETASSGN the subprogram executes a normal return
to the FORTRAN calling subprogram by executing a RETURN macro.

. PROGRAM LOGIC:
PVAL and FPVAL -

This section of the subroutine contains two entry
points, PVAL and FPVAL. The FPVAL entry is located at the
conclusion of PVAL. FPVAL establishes base registers, stores

B-4-53

the value 4096 at the storage location FLAG, then branches
back to the location FORTSAVE in PVAL to begin processing the
floating point parameter.

The PVAL section establishes register 12 as the base
register. Zero is stored in the fullword location FLAG. At
the instruction FORTSAVE, the program locates the:FORTRAN save
area, then loads registers 2, 3, 10 and 11 with the corresponding
GPSS register contents, to prepare for the operation of GPSS
subroutines STPVAL and PRVAL. The initial call to PVAL obtains
the addresses of these two subroutines and stores them at lo=
cations STPVAL and PRVAL respectively. Subsequent calls test
for a non-zero value at STPVAL and branch to PVALUEGO on this
condition. '

At PVALUEGO, register 14 is loaded with contents of
register 2 plus 4096 to satisfy a GPSS condition for entry to
STPVAL and PRVAL. The address of GPSS control words is loaded
into register 10 for later use in determining the active trans-
action number.. The addresses of the parameter number and type
are loaded into registers 5 and 6 from the argument list add-
ress in register. The address of PRVAL is loaded into register
9.

The parameter number and type are loaded into registers
6 and 8 respectively from their storage locations. Register 8
contents are tested with the same characters as those in ASSIGN
to determine parameter type. Branching to PHALF, PFULL, PFLOAT
and PBYTE.is executed for halfword, fullword, floating point
and byte parameter types respectively. If none of these types
are found, the program continues into an error return area.
The error code is given a value 2 and the program executes in-

Structions identical to those in the ASSIGN error return pro-
cedure,

At PHALF, PFULL and PFLOAT locations hexidecimal con-
stants are loaded into register 4, then the program branches
to MASKX. At PBYTE the program also loads a hexidecimal constant
into register 5 and continues to MASKX. An OR instructions at
MASKX places hexidecimal constants in bits 1-7 of register 6 for
branching to subroutine PRVAL. The currently active transaction
number is loaded into register 7. :

The program branches to the PRVAL start location con-
tained in register 9. Upon return, the value of FLAG is tested
for a zero. If FLAG is non-zero, indicating a floating point
parameter, the program branches to FLOATPT. For integer parameters,
the program loads the parameter value returned from FPVAL in
register 6 into result register 0, then branches to RETPVAL
to initiate a procedure for returning +to FORTRAN.

B-4-54

At FLOATPT, register zero is declared as a floating
point register by an SDR instruction. The parameter value is
first stored at VALUE, then loaded into result register 0,
The program continues to RETPVAL.

At RETPVAL all registers except 0 and 1 are restored.
The hexidecimal FF flag value is stored at the fourth word of
the FORTRAN save area to indicate a return condition. The
last program instruction location executes branching to the
FORTRAN calling program return location.

PROGRAM LOGIC:
LOGIC

The LOGIC section establishes register 12 as a base
register, then obtains the address of the GPSS save area from
the FORTRAN save area. Contents of registers 3,10 and 11 from
the GPSS save area are loaded into the respective LOGIC program
registers. Register 10 contents, plus a displacement of 24
bytes, provide the -address of GPSS control words which are
subsequently loaded into register 10. A displacement of 1040
bytes beyond the control word address provides the starting
address of the logic switches and this is placed in register 9.

. The loop for performing logic switch setting and’
resetting begins at NXTLOGIC. At this location, addresses of
the first two words of the argument list are loaded into
registers 6 and 7 respectively. The address in register 7 is
saved at LOGRFPTX. A logic set or reset halfword indicator

and the logic switch number are loaded into registers 6 and 7
respectively, from the addresses contained in those two registers.
The logic switch number is also placed in register 4. Register
7 is shifted left by 2 bits and register 4 by 1 bit. The
addition of these in register 7 provides a multiplication by 6,
the basic storage byte allocation for logic switches. This

sum is also placed in register 4. Register 6 is examined to
determine if. a switch set or reset is to be implemented and
branches to SET or RESET if the respective characters, LS or

LR, are present. If the argument list is.errorneous and contains
neither character, the program assigns a value of 3 to the error
code and implements procedures identical to the error routine
coding in ASSIGN. ’

At RESET, register 0 is zeroed. A wvalue of 4 is added
to the quantity in register 4 (6 * switch number) and the
program branches to SETRESET. A branch to SET loads the
hexidecimal guantity 0014 into register 0, register 4 is in-
cremented by 2 and the program continues to SETRESET.

The indicator for a reset or set condition is contained
in register 0. This halfword is stored in the first two bytes
of the logic switch storage location by the instruction at
SETRESET. The program branches to the GPSS chain maintenance
area at 1688 bytes beyond the GPSS base address contained in

B-4-55

register 1ll1. For a reset condition, the contents of bytes

5 and 6 are loaded into register 7. Register 8 contains the
storage address of the chain holding transactions waiting for
a8 reset condition. This address is stored at bytes 5 and 6,
When a logic set is implemented, contents of bytes 3 and 4 are
loaded into register 7. The storage location of the chain
holding transactions waiting for a set condition is stored in
bytes 3 and 4 from register 8.

The argument list address stored at LOGREPTX is
tested for a negative sign bit. When this occurs, the list
is ended and the pProgram branches to LOGICRET. The program
continues by adding 8 to the contents of register 1 and
branching back to NXTLOGIC. At LOGICRET the program executes
the RETURN macro to return to the FORTRAN calling subprogram.

B-4-56

ASSIGN/LOGIC/PVAL/FPVAL

e et]
' SPECIFY 12 |
. AS BASE |
| REGISTER |
- |

—_——— X

LOAD REGISTERS

2, 3, 10 & 11

WITH GPSS REGISTER
FROM SAYE AREA

- TEST "~
CONTENTS “\ -
////ié LOCATION .
STPVAL FOR
ZERO

p— -

Y

GET ADDRESS OF
PRVAL, STPVAL
STORE AT PRVAL,
STPVAL

¥
SET R14 to

ASSIGN GO
R2 + 4096

[
Y.

LOAD GPSS
CONTROL WORD
ADDRESS INTO R10

v

LOAD ADDRESS]
OF STPVAL INTO
R9 .

I
-

B-4-57

NXTLOGIC

i

1

LOAD R6 WITH R1
ADDRESS; R7 WITH R1
ADDRESS PLUS 4 BYTES

!

R7 AT LOGREPTX

LOAD SET OR RESET

INTO R6 FROM R6
ADDRESS

1

SAVE ADDRESS IN)

%

hi

LOAD SWITCH NO.
INTO R7 FROM R7
ADDRESS

MULTIPLY SWITCH
NO. BY 6

L

1
PLACE : 6*SWITCH NO |
IN R4 AND R7 |

B-4-58

NEXTASGN

g

| i
LOAD PRRAM.NUMBZR,
VALUE, PARAM.TYPE

ADDRESSES FROM FORT.
‘FORT.ARG LIST INTO

R6, R7, RS

]

b1

LOAD CONTENTS AT
ADDRESSES IN R6,
R7, INTO R6, R7 |

|

//EEST

PARAM,.TYP YES 1
"IN R8 for ‘/'—“?:'ASGNFLOT ‘

LOATING PT

Eﬁ“ﬁ?-;@g YES , SET ERROR i_
NEG >——3> CODE TO 8 |NEGASSGN

_ -
' BRANCH TO
ASGERRET
PARAM . TYPE
IN RS FOR i
HALFWORD ASSNHALF)
TE;;\\\\\ l
PARAM.TYPE YES
7" IN RS FOR ™ ‘
5| ASGNFULL
FULLWORK ////' ! |
& | ,
M P S
"No

ASGNBYTE

y ;
' PLACE A !
VALUE OF J

1 INTO RS

Y.

LOAD ADDRESS OF
FORTRAN SAVE AREA ,
ASGERRET (R13) INTO R10 '

B-4-60

|
X

LOAD ADDRESS
OF STORAGE
AREA SAVEAREA
INTO R13

v

STORE CONTENTS
OF R13 AT
FORTRAN SAVE
AREA ADDRESS
PLUS 8 BYTES

¢

STORE ADDRESS
OF FORTRAN
SAVE AREA AT
STORAGE
LOCATION
SAVEAREA +

4 BYTES

.

STORE CONTENTS
OF R8 AT
ERRCODE '

J

LOAD ADDRESS
OF STORAGE
AREA ARGLIST
INTO R1

BRANCH TO
ARGERR

B-4-61

-

b

LOAD R13 WITH
FORTRAN SAVE
AREA ADDRESS

AT SAVE AREA + 4

¥

RESTORE REGISTERS
R2 THROUGH R12
WITH CONTENTS
FROM FORTRAN

SAVE AREA ’

¥

LOAD RETURN
ADDRESS INTO R14
FROM FORTRAN
SAVE AREA

v

BRANCH TO FORTRAN
RETURN ADDRESS

ASGNFULL ‘ AT FULL

LOAD
CONSTANT
ASGNHALF
INTO R4

v

.
BRANCH TO
MASKOP ‘

b i

:

-

LOAD !
CONSTANT

INTO R4
|

'S

B-4-62

- NEGASSGN

|
LOAD ERROR |

CODE 8
INTO RS

|

¥

BRANCH TO
ASGERRET

A

TITTIITI NI s 0 oy

v opry

ey

<

! BRANCH TO
MASKQP

—

—_— ——— e

. —

LOAD CONSTANT |

ASGNFLOT' AT FLOAT |
INTO R4

|

b o

BRANCH TO
MASKOP |

LOAD
CONSTRANT
AT BYTE
INTO R4

ASGNBYTE

OR REGISTERS
K \ -
MRASEOF R6 WITH R4

v
LOAD

TRANSACTION
NUMBER INTO
R8

BRANCH TO
STPVAL '
ROUTINE

YES ’RETURN TO
END OF ARC. >——f» PROGRAM ' RETASSGN

LIST
-..\/

[NO

i

ADD 12 TO
CONTENTS OF Rl
TO INCREMENT
ARG LIST POINTER

|
74

BRANCH TO |
NEXTASGN

ENTRY PVAL

ESTABLISH
R12 AS

BASE
REGISTER ’

+ PVALMAIN | ZERO CONTENTS OF
Rll AND STORE
AT FLAG

v

GET ADDRESS OF
FORTSAVE | GPSS SAVE AREA
FROM FORTRAN
SAVE AREA

.

B-4-64

PLACE CONTENTS OF
GPSS REGS 2,3,10

AND 11 IN R2,R3,R10,
R11

|

TEST
CONSTANT ~,_NO

AT STPVAL _~ ¥~ PVALUEGO

FOR ZERO.

LOAD ADDRESSI
OF STPVAL
INTO R6 ‘

STORE ADDRESS|
IN R6 '

AT STPVAL

v_

LOAD ADDRESS
OF PRVAL j

INTO R6

i ,
V.

ISTORE ADDRESS
IN R6

AT PRVAL

l

B-4-65

SET R14 TO

PVALUEGO
R2 PLUS 4096’

!
V-
LOAD ADDRESS OF

GPSS CONTROL
WORDS INTO RI10

— —

LOAD R5, R6 WITH
WITH
ARGUMENT ADDRESSES |

v

LOAD R9 WITH
PRVAL ADDRESS

-

LOAD R6, RS r
WITH PARAM }

L}
I
¥

L.

NO. AND TYPE

B-4-66

PFLOAT

PBYTE

SET ERRCODE:
EQUAL TO

EXECUTE ERROR

RETURN IDENTICAL
TO ASSIGN

B-4-67

SETITeuteurcsen 4s Gapieriedgroriciiesss

apwsasszaseas

BT e ey =y

sprpesr

PHALF

PFULL

LOAD CONSTANT
STORED AT HALF

INTO R4

LOAD CONSTANT
STORED AT FULL.
INTO R4

o

e ——— 1y AL =

!

BRANCH

TO
-MASKX

PFLOAT

LOAD CONSTANT
STORED AT FLOAT
INTO R4

:

BRANCH
TO
MASKX

B-4-68

PBYTE AT BYTE

LOAD CONSTANT 1
|
INTO R4 !

"~

|
SET R6 FOR CALL'!
MASKX TO PRVAL BY OR
R6 AND ‘R4

PUT TRANSACTION‘

NO. IN R7 FROM
GPSS |

BRANCH

TO
PRVAL

s

ZERO R7
LOoAaD VALUE AT
FLAG INTO R1ll

!

B-4-69

—_— -

DOES \

»
“.FLAG EQ. | FLOATPT
\.0? |

LOAD RO WITH
PARAM. VALUE
IN R6

x

e e

BRANCH

TO
RETPVAL

PERFORM FLOATING

POINT SUBTRACTION
OF RO FROM RO

FLOATPT

|
4

STORE RESULTS
IN
Ré. AT VALUE

T

o
LOAD RO WITH
FLOATING POINT NUMBER

AT VALUE

B-4-70

RETPVAL,

-

RESTORE REGISTERS
14, 15, 2 THROUGH

12 FROM FORTRAN
SAVE AREA

' B
- PLACE ONES IN
FIRST BYTE OF R1l4
CONTENTS IN FORTRAN
SAVE AREA

BRANCH TO FORTRAN
RETURN ADDRESS
IN R14

l

B-4-71

r— e e———— e

ENTRY
| FPVAC

|

T S e —————

DECLARE R15 Aas

BASE REGISTER |

|
T

A7

LOAD ADDRESS OF |
PVAL MAIN INTO |

R12

v

STORE 4096

AT FLAG

!

LOAD ADDRESS OF
FORTSAVE FROM
PVAL INTO R1O

I

BRANCH
TO
FORTSAVE

B-4-72

ENTRY]

LOGIC

I

sy
!

DECLARE R12 AS |

BASE REGISTER l

>

LOAD R3, R10, AND |
R1l WITH CORRES-
PONDING GPSS REG-

ISTER CONTENTS FROM
GPSS SAVE AREA.

I

GET ADDRESS OF
GPSS CONTROL
WORDS FROM R10
+ 24 BYTES

i

GET ADDRESS OF :
LOGIC SWITCHES
FROM CONTROL WORDS |
+ 1040 BYTES

B-4-73

DOES

R6 EQ : i
LS ~ YES : SET

LOGIC

SET

DOES

R6 EQ
LR. LOGIC
RESET

SES RESET

' NO

SET ERR CODE
TO 3

v

EXECUTE ERROR
RETURN IDENTICAL !
TO ASSIGN |

B-4-74

RESET

SET | PLACE HEX

SETRESET

SET RO TO O

)
4,.

NO INR4

ijmn 4 TO 6*SWITCH

v

BRANCH TO
SETRESET

'14' IN RO

;

ADD 2 TO 6*SWITCH

NUMBER IN R4

2

STORE HALF WORD IN
RO. AT TIRST ‘TWO
BYTES OF LOGIC

SWITCH

!

T I N T T I T e T I T T T I I T T Y

L o B

SRR R L R o T

it i pdog ot b e rto d o Lron sy pe ot]

BRANCH TO ‘GPSS CHAI
MAINTENANCE AREA AT
R1l + 1688 BYTES

B-4-75

LOAD HALFWORD AT

R9 + R4 ADDRESS
INTO R7 =

!

STORE R8 HALFWORD
INTO R9 + R4 ADDRESS

:

L]

|

LOAD LOGREPTX -
CONTENTS INTO RO |

TEST
RO FOR

BRANCH TO
NEG.SIGN | '
e I LOGICRET
| RETURN
ADD 8 TO FORTRAN A OGICRET
TO R1 l ‘ |
|
BRANCH

\
|
TO NXTLOGIC‘

B-4-76

000v€E000
000EE000
000CE000
0001E000
0000£000
00062000
00082000
000LT000
00092000
00052000
00052000
000£2000
00022000
00012000
00002000
00061000
00081000
000L1000
00091000
00051000
000171000
000£1000
00021000
000t 1000
00001000
00060000
00080000
000L0000
00080000
00050000
0000000
000€E0000
00020000

(s°S1)21901 11v0
S § 21901

dO0-0ON NI SLINS3Y¥ ST Y0 ¥ NvHLI ¥3IHLIO 3900 ANV
(¥38WNN HOLIMS‘¥T/S7)I1IDAT 1IVD
:3¥nLv3d 31901

*§¥5078 NDISSY € SIIvd13IY
(4d4°001° 1 Hd 0L 1)NDISSY 17VD
*QITYA SLNIWNDISSY ITdILTNW :3JLON

(Hd'O0L'LINDISSY T1TVD
Hd‘0L't NODISSY

“3o019
d13H ONITIVD 0L NiuNl13¥ dO-ON vV ONY ¥Y¥3DuY
OL 7IvD ¥ NI SL7NS3¥ 3002 IdAL ¥IHLO ANY
“8d 40 1d°'Hd’'dd SI 3IdAL IYIHM
(3dAL°3NTVA ¥ALINVUVLINDISSY T1IVD
:3YNLYI4 NDISSY

HOLIMS D1ID07 v 13534 HO 1

NOILOYSNVHL 3IAILOVY 3IHL 40 ¥31IWvYvYd v OL INTVYA VY NDIS
NOILIDVSNVYL 3JATLOV 3IHL 40 ¥ILIWVIVL V WO¥S INTVA ¥V NIV
$3YY AJHL "30VYNIOVYd A-S

- e

- SSd9

asn 01

- Lom-

- §Sd9

3asn 01

s
Sy
80
Sd9 KA1l

3HL NI 431¥0ddNS 10N NOILVIINNWWOD NVYLYDI-SSdT LIWY3d Ol

SNOILINNd GNvY S3INILNOYENS 378VTIVI NVYLYO0Jd 40 IDVHOVd V

N D
NOISSY

S1 SIHY

IsSsy
JNVN Y3IGn3

*
»
»
*
*
L
*
*
*
Y
*
*
*
*
*
*
*
*
*
*
®
*
*
*
*
»
»
*
*
*
W
®
*
W

B-4-77

00019000
00009000
00065000
00085000
00045000
00095000
00055000
00065000
000ES000
00025000
0001S000
00005000
0006%000
000Bt00O0
000Lbv000
0009000
0005000
000vb000
000EL000
000Zb000
0001000
0000000
0006£000
0008E000
000LEDOO
0009€000
000SE000

b-01 93¥SSdD (S)09‘'ii'0olL i

€-Z 9D3YSSdD (s)sz'e'z W1

JAVS (¥04 OL 1id (e1)b's 1

TH'» DNISN

. 0'gL ¥lve

(Z1'vt) 3Avs

v NDISSY,L12 aa
X o2a

‘ (s1)zl |
31907 1VAd ' TVYAd AY¥INI

0 L¥VIS NDISSY

*TYAdd ONV “IYAd ‘01907 40 S3SYITV QINDISSY 39 1snw 1310N

‘M OL OlHd SN¥AL3Y (04 'Hd)IVAd=X :37dWYX3

*d0~ON VvV NI S1InS3¥ 3000 3IdAl ¥3IHLD ANV
‘8d H0 Hd‘dd ST IdAL JYIHM
(4313WVYYd IdAL)TVAd

$INMVA Y31IWVAVA ¥IDILINI JININ¥IS3Y DL

*SXJ078 J1907 € S3IIVI4IY
(r*¥1°€'s1'1°51)21507 19vD
*GITVA S13S3Y/13S IVHILINW 310N

*i‘)‘l‘*i*****ﬁ}i’

B-4-78

000€0100
00020100
00010100
00000100
00066000
00086000
000.6000
00096000
00056000
000v6000
000£6000
00026000
00016000
00006000
00068000
00088000
000.8000
00098000
00058000
000¥8000
000€E8000
00028000
00018000
00008000
00062000
0008L000
000LL000
0009L000
0005L000
000v2000
000€£L000
000ZL000
00012000
00004000
00069000
00089000
000L9000
00099000
00059000
000+9000
000€9000
00029000

NYNL3Y - YOYu3

NIVHD 3AVS QUVM¥OS
NIVHD 3AYS Q¥VM©OVE

¥3uV 3IAVS L¥04d
3000 ¥O¥Y¥3
1531 3148

1s31 gqyomIINg

1S31 QYOM4TVH

INTYA 93N 404 1S3

1531 9NILVOTd

IdAL Wyvd

INIVA

¥3IEWNN Wyvd

1SI7 DYV NI ¥QGY 1SV1 3AAVS
1517 9¥vV 1¥04

yaavy 1VAdLS

SOYOM TOYLNOD SSdD

TVANd 40 yaav

TYAdLlS d0 d¥aav

(ev)sz‘zci'’e

p+VIUVIAVS ‘€L

st'vi
(443DUVIA= "G}
1s11948Y‘L
3000443'8
-(er1'o)v'ol
(01°0)8'€E}
VIUVIAVS ‘EL
€1'0}
t'e
JLAGANDSY
8'v
gd't
TINANDSY
8'v
id'v
JIVHNDSY
8'Y
Hd'V
NDSSVYD3IN’
L'L
10714NDSY
B't
1d'y
(g)o‘'se
(L)o's
(9)o'o
8'0
(1)o‘'B'9
IYAdLS'6
(o1)vz'ot
19600, 4="p1
Al A
TYAUd'9
(01)o9‘9
TYAdLS'9
(o1)zs'9
OYNDISSY
9's
TYAdLS‘9D
s'g

W

yiva

- }]

‘3ang
)

4s

13¥Y3OSsY

NOSVY.IXIN

O9NDISSY

B-4-79

0009€100
000SE100
000bE100
000EE100
000ZE10Q
0001E100
0000€100
00062100
00082100
00042100
00092100
00052100
000bZ100
000£Z100

ao00zZeZ 100
goolzioe
00002100
00061100
00081100
00041100
00094100
000St100
000tt100
000EL 100
00021100
00013100
00001100
00060t00
00080100
000.0100
00090100
00050100
0000100

$1-01 D3IYSSIH
€-Z D3USSdH
JAVS 1¥04 04 1d

YILIWvHYd 1d ONILYDTd A8 SOd 13S

ON JvX

134 ONDD ¥0¥Y¥3 01 HIvE HONvM@E
3000 y0o4y3

¥yaavy Nuni13y

IVAdLS'9 1
S‘s us
(s)og‘*tii’ot W1
(c)sz'e’e Wl
(e v's)
ovld‘ii 1S
AN} us
Zi'x DNISN
0°'C) WHlve
(Z1'v1) 3nvs
1S X bo 4

v IVYAd, ST aa
(st)oy a

40 sd
(ZL'v1) Nunl3y
NOSYLX3N a8
1Tl d="1L) J
NOSSYL3Y'P o8
0'0 1l

6'S ¥lvg
(or)acL's H1
v'eg ¥0

EJUN: X4 g
dO%SYW <]
1vold'y 1
dOYSYN q
1Ind‘t 1
d0YSYW g
41YH'y 1
134¥3DSY g
B'8® v

143 ug
(E)zi'vL)

JAVYSLHOS
NIVWIVAd

IVAd

NOSSY1IY

dOYSVYW
JLABNDSY

1074NDSY
1In3NDSY
41VHNDSY

NOSSYD3IN

B-4-80

000cL100
00014100
00002100
00069100
00089100
000.9100
00093100
00053100
000r91C0
000£9100
00029100
00013100
00009100
00065100
00085100
00025100
00095100
00055100
000vSt00
000ES100
000ZS5100
00015100
00005100
0006¢100
0008v100
000LF 100
0009r100
000SY 100
000t¥100
000Et100
000C¥100
000100
0000100
0006E100
0008EL00
000LEIOO

NYNL3Y - ¥Oyu3

3003 ¥Oo¥y3
NIVHD 3AVS QYVMYO04
NIVHD 3AVS Q¥vMNOve

Y3UVY 3AVS L¥04

1S31 3148

1831 HNILvVD14

1S31 QiomM1Ind

1531 qdOMATVH
3dAl Wyvd

Y3aKNN WYvd

yaav IvAyd

1S17 ¥V 1y0d
SQYomM JO¥LNOD SSd9

TYANd 40 yaav

TVAdLS 40 ¥aay

(er)sz'zci'e
P+YIAVIAVS'EL
st'b1
(¥y¥39UVY)A="‘5S1
1SIT9YV*L

El s ERE:]
c's
(e1'o)v'ot
(oL'0)s‘cEl
VIUVIAVS ‘EL
E£1L'01
31A8d
8'y

gd'y
1v013d
8'v

1d'y
1In4d
8'vy

4d'v
41VHd
8't

Hd'tb
(s)o's
(9)o'9
TvA¥d'6
(1)o'9's
(ol)vz'ol
—mmov.n—H-QF
z'vi
IvA¥d'9
(o1)o9’9
TVAdLS‘9
(or)zs'e
093N VAd
9's

3aNg
- 1o

a93NTvAd

B-4-81

0000200
000E0Z00
000Z0Zo0
00010200
0ooo00Z00
00066100
00086100
000L6100
00086100
00056100
000F6100
000E6100
00026100
000i6100
00006100
00068100
00C88100
000.i8100
00098100
00058100
0o0v8100

000E8L00
0008100
oooileLoo
00008100
0006L100
0008L100
000LL100
0008L100
000SL100
000pPLLOO

000ELIOD

(NIVWIYAd)V="2Z1
S1*IVAdS

zi

(zr'v1)

1 T¥AdZ, G102
(s1)ol

40

vi

340X (g1)2)
(er)sz'zi‘e
(e1)zi's1'pt
aniva‘o
Iniva‘g

o'o

IVA4L3Y

9'0

* 1d1vD14
'L

ov14' 1L

L'L

6's

ON 2VX {oL)seL-L
v's

31A8'y
XHSYW
lvold'y
XHSYW
TInd'y
XHSYW
41vH'b

vt

Magy Nuni3y (et)zi'vy

BNISN
d0ua
JAVS

o2a

sa
L) |
IAn
Wl
Wi
N
15
yas

4y

3Ng
¥2

yive

[= o
Q-

o>
“Jodmam

TVAdS

TVAdLIY

1d1ivol4

XMSYW
31A8d

1Y¥014d
1Indd
47VHd

B-4-82

0oovbzo0
000€EYTO00
0002200
000t»200
0000v200
0006€£200
0008€Z00
000LE200
0009€Z00
000SECO00
000v€200
Q00EEZ00
000CEZ00
0001€200
0000£200
00062200
00082200
000L2200
00092200
00052200
000v2200
000€2200
000¢2Z00
o0o0o0lzzoo
00002200
00061200
00081200
000L12Z00
00091200
00051200
000vr1ic00
000€1200
00021200
00011200
00001200
00060200
00080200
00020200
00090200
00050200

$3000 yOHY3
NIVHO 3AVS QYVM¥04d
NIVHO 3AVS Qqivmiove

YI¥vY 3AVS 1304

“ON HOLIMS * 9

ON HOLIMS
¥7 ¥o s
1SI7 DYY 40 ¥AAY LSV 3AVS

(¥¥39uv)A="‘S) 3|
1SI794V*} \A
3Q004Y¥3’8 18

- £'s v

(e1'0)v'0L 1s
(ot'o)s‘€el 15
YIUVIAVS ‘EL v

cL'ot Ul
13534 E[:]
9's he]
y1's H
138 3g
9's k]
s1's HY
L'y R
v'e yy
't vis
'L vis
L'y]
(L)o'L 1

(2)0'9 HY
X1d3y¥yo01'L 1S
(t)o'L’o w1l

9011 S$Sd9 (oL)ovolr'e 8|
TOYLINOD SSdD (ot)vz'o1L !
3Isva'o0lY SSdY (2)og'11 01 Wl
€Y SSdH (T)zce'e 1
(ev)v'e 3

Th'* ONISN

o'zl ¥ylva

(cr'vL) 3IAVS

131I207,619 2d

(si)os a

40 sg

ot g

(3AVS1¥0d4)v="01} g

ov14°11 15

_wmoq.u_n-—.w h|

ZTL'NIVWIVYAd ONISN

Si d0o¥d

2190711XN

J1901

B-4-83

00029200
00099200
00059200
0009200
000€£9200
000Z9200
00019200
00009200
00065200
00085200
000£5Z00
00095200
00055200
0005200
006€SZ00
00025200
00015200
00005200
00065200
0008200
000LbZ00
00b9vz00
0005200

108, X
41
481

OIDOTLXN

-Q.&“.F

13801901y

0‘o

X1d3¥901°%9

(r's)o’s

(v's)0'L

(+t)asol's

(6'2)0'0

1Sid='y

1¥100,x='0

13534138

.Q.&H.V

_ 0'o

: vi

¥aay N¥ni3y (e1)zL've
NYNLI3Y - ¥O¥¥3 (gl)ez'zi'e
Y+V3IUVIAVS ‘€1

si'vL

oa
sa

1SIT94Y
3002443

. S0 Y3IHVYIAVYS
(Z1'v1) NuNl3y¥ 13¥01907

a
v
o8
Y11
3
H1S
HY
vse
HiS
v
H1
L)

v
s
ug
1
Wl

1
yvse

13534L3s
‘138

13S3Y

B-4-84

00088Z00
00048200
00098200
00058200
0008200
000£8200
00028200
00018200
00008200
00064200
0008L200
000LL200
00094200
00054200
000¥.1200
000€L200
000cLZ00
0001LE00
0000LZ00
00069200
00089200

X

187,270
187,210

11d, 219

1d4d, T2

.I& ' Nl_u

v8d, 210
1000000V 0 (X
100000030,X
10000000 8 (X
100000080, X
(NIVWIVAd)Y
(3AvS1804)Y
144443400, X}
41

41
+00000000,X
41

F1}
(3qoouy3) eV

aN3
20
o0

20
oa
aa

od
a4
Ja
aa
aa
2d
24
sa
sda
oa
sa
sa
aa

Ul

$1

Id

4d

Hd

ad
1vold
13
4IVH
31A9
ZNO2aY
INg2aY
NSYW
INva
ov14
TVAdLS
1YAYd
X143¥4901

B-4-85

FORTRAN SUBROUTINE ARGERR

PURPOSE:

This subroutine displays messages when errors in the argument
lists of assembler subprograms ASSIGN, LOGIC, FPVAL and PVAL
are detected. Recognized errors are: ‘

1. An invalid parameter type referenced in calling
ASSIGN, PVAL or FPVAL.

2. An invalid switching operation specified in a call
to LoOGIC. '

3. An attempt to assign a negative number to an
integer parameter when calling ASSIGN.

USAGE:

This subroutine is link edited with the name ARGERR. Sub-
routines ASSIGN, LOGIC,PVAL and FPVAL call this subroutine
using the argument ERCODE if the above errors occur. When
an invalid parameter type occurs in ASSIGN, a value of 1 is
stored at ERRCODE, then ASSIGN branches to ARGERR with this
argument value. Invalid parameter types in PVAL and FPVAL
both produce an ERRCODE value of 2 before branching to ARGERR
Calls to LOGIC with invalid switching operations specified
make ERRCODE equal to 3 and, lastly, attempts to assign
negative numbers to integer parameters in ASSIGN are given an
ERRCODE value of 8.

RESTRICTIONS:

None

PROGRAM LOGIC:

The program executes a computed GO TO statement and branches
to the appropriate WRITE statement for the condition specified

by the argument ERCODE. After execution of the WRITE state-
ment, the program returns to ASSIGN, LOGIC, FPVAL and PVAL

B-4-86

SUBROUTINE ARGERR (ERCODE)

1 [WRITE (6,101) | -99

2

/

|
‘ GO.- _'IE.’ .:ERCODE \QERITE (6 ,103;] + 99
WRITE (6,108)

I

gg | BETUSN

WRITE (6,102) | ~ 22

B-4-87

00052000 GaN3

000+T000 NY¥NLIY 66
000EZ000 (///.°SANNILNDD WVYYUDOUd *y¥y3l-
000ZZ0003WYYYd ¥ OL 3NIVA 3IAILYDIN ¥ NDISSY Ol LdWILLY ##xxx ,*///)1VWHO4 80O}
00012000 (801'9)3114M B
00002000 66 DLDD
00061000 (///7°:°S3NNIINDD WyyDO¥d ‘1Y) -
0008100021907 NI NOILVY¥3IdO DONIHOLIMS QITVANI Q3II4103dS #»xsx ,*///) LVWHO4 €01
000L1000 (£01°9)3L1I4M €
00091000 66 0109
00051000 (///',°S3INNILNOD WVNDO¥d -
0007 1000°TIYD TVYAd NI 3dAL YIL13IWV¥Yd QITYANI Q3IJ103dS sw#+#+x *///) LYNHOd ZTO}
000E1000 (zoL'9)3LIHM T
00021000 . 66 0109
00041000 (//7)°S3NNIINOD WYY¥DOHd *1-
00001L000TVD NDISSY NI 3dA) HILIWVNVYA QIIVANI Q3T4103dS +#x#x ,°///) LVWHOL4 104
00060000 (101'9)aLiym
00080000 300043 (B'66°'66°66°66"'€°Z° 1)0109D
0000000 300043 ¥*¥3DIINI
00090000

00050000 *319017 H0 ‘1VYAd
000+0000 °*NDISSY O1 T11VD NI Q3II4103dS IdAL HILIWVHVL QITVANI NIHM IDOVSSIW
000£0000 MHOUY3 SINIY¥d *3INILNOYENS NDISSY OL NOINVIWOO SY Nn¥ 3IANILNO¥ENS
00020000

00010000 (30024¥3)¥Y¥39YVY 3INILNOYSNS

YyY35¥y 3WYN ¥3EW3

o)
e/
J
J
J
W

B-4-88

ASSEMBLER SUBROUTINE BAGS

This subroutine provides a mechanism to simulate the
random delivery of passenger bags. It is called by each de-
ﬁlaning passenger transaction with one of the argument values
specifying the number of bags assigned to the passenger group.
BAGS assigns a random integer between 1 and 64 to each simula-
ted bag. The value of the largest random number assigned to
the bags of the group is retained by the transaction in PH3.
The number of times each integer occurs is recorded in the 64
element array, MH7. When all transactions from a flight have
completed calling BAGS, elements of MH7 contain the number of
times the corresponding ramdom number between 1 ‘and 64 was
generated. The sum of elements of MH7 is identical to the
number of bags on the flight. The total number of bags for
termination passengers is stored in MH1 (PH2,14) and in MH1
(PH1,15) for transfer passengers. The GPSS main program and
FORTM will use the values in the MH7 elementg to simulate
the time required for bag delivery. The waiting time of the
passenger transaction will depend upon the number of simula-
ted bags in each MH7 element, the delivery rate and the
highest random number generated for the transaction.

Usage - This subroutine is called by deplaning passenger
transactions in the Deplaning Passenger Logic Section of the
GPSS main program. A HELP block performs the call as shown

in the following exaﬁple:

B-4-89

HELP BAGS, PHl, FN*PB14, 4, 3, PBS.

The B-operand defines the MHl row number of the simu-
lated flight deplaned by the transaction. The C-operand
specifies the bag distribution function placed in PBl14 and
passes the value selected by the transaction from the dis-
tribution to BAGS. The D- and E-operands specify the number
of the byte and the halfword parameter, respectively, to
place the number of bags assigned to the transaction and
the maximum random number generated by BAGS for the trans-
action. The F-operand identifies the transaction as represen-
ting a terminating or transfer passenger by containing
respective values of 1 or 2.

For the above example, subroutine BAGS, returns with
the number of bags assigned to PB4 and the maximum random
number generated for this transaction in PH3. Elements of
MH7 are incremented by each of the transactions associated
with the flight if PB4 is non-zero. After all deplaning
passenger transactions from the flight have completed the
use of BAGS, the flight transaction, operating in the
Baggage Unloading Logic Module, executes a 'HELPA call to
FORTM to inspect MH7 and place information about the matrix
in byte parameters. The FORTM program resets the MH7
elements to zero values. After the return from FORTM occurs,
the flight transaction resets logic switch DPL1C to allow
deplaning passenger.transactions from the next succeeding

flight to execute BAGS.

B-4-90

Restrictions - Subroutine BAGS branches to storage locations
internal to IBM GPSS-V. Use of this subroutine with other °
systems may lead to unpredictable results.

Program Logic -

Subroutine BAGS, after executing the SAVE instruction and
declaring register 12 as the base register, tests for the
value at LINKADDR for zero to detérmine if the subroutine
has been executed previously. 1If éreviously used, the
program branches to LINKED. Otherwise it obtains the starting
address of MH7 and stores it at the address LINKADDR.

At LINKED, the program loads the value 4096 into register
14 then adds the contents of register 2 to register 14 to
satisfy an entry condition ‘for GPSS subroutine DRAND. The
B-through F-operand values are loaded into registers 4 through
8, then stored at the 5 fullword locations starting at NORAND;
The value of the C-operand is loaded into register 4 and
tested for a zero value. 1If this occurs, nq bags are
simulated and the program returns to GPSS.

For a non-zero C-operand, the program loads the MH7 starting
address into register IO and the PB8 value into register 0, then
branches to DRAND at location NEXTRAND to produce a random number
using RN8. The random number appears in register 7. The random
number is shifted from 0 to 1000 to a range of 0 to 62 by a right
shift of four bits.

A transfer passenger transaction causes BAGS to branch

to XFER. For the terminating passenger case, the program

B-4-91

continues and increments the MH7 count of occurrences
of the random number. For terminating and transfer passen-
gers the random number sélected is compared to contents of
register 9 and retained if larger. At locatinn COUNT the
program performs a test to determine if an additional random
number is to be generated. If true, the program branches
back to NEXTTRAND.

The program places the number- of bags in PB4 and the
highest random number in PB3 by using subroutine STPVAL.
It then increments the number of bags in MH1 (NORAND, 14)
for terminating passengers or in MH1 (NORAND, 15) for transfer

passengers. The program then returns to GPSS.

B-4-92

SPECIFY 12
AS BASE
REGISTER

ZERO RO

LOAD R4 WITH

LINKADDR

IS THIS THE

LINKED

STORE CONTENTS
OF R10 AT GPSSR10

LOAD ADDRESS OR-
GPSS CONTROL WORDS
INTO R10

B-4-93

LINKED

LOAD STARTING ADDRESS
OF HALFWORD
MATRICES INTO R1l0

LOAD STARTING
ADDRESS OF MH7
INTO R10.

STORE STARTING
ADDRESS OF MH7
IN LINKADDR

/

RELOAD R10
FROM GPSSR10

A

SET UP R14 FOR
BRANCH TO DRAND

RELOAD RI10
FROM GPSSR10

\

LOAD R4
WITH C OPERAND
(NO. OF BAGS)

B-4-94

RERO RS9

LOAD B8 INTO R6
NO. OF R.NGENERATOR

LOAD ADDRESS
OF DRAND INTO R15

!

STORE R10 CONTENTS
IN GPSSARLO

y

LOAD MH7 START
ADDR. IN R10

LOAD PB8 VALUE
INTO RO
(TERM. OR TRANSF.)

\
LOAD 2 INTO Rl

B-4-95

RETURN

NEXTRAND

BRANCH TO DRAND

¥

SHIFT RANDOM NO. IN

R7 RIGHT 4 BIT POSITION

LOAD R8 WITH
R7 CONTENTS

CALCULATE
NO. OF BYTES
FROM MH7 START
ADDRESS BY SHIFTING
R8 ONE BYTE LEFT

LOAD CONTENTS
STORED IN MH7 INTO RS
FROM ELEMENT CORRESPONDING
TO CURRENT RANDOM NUMBER

B-4-9¢

XFER

COUNT

INCREMENT VALUE
IN R5 BY ONE

STORE UPDATED VALUE
IN MHA7 ELEMENT

INCREMENT RAND. NO.
IN R7 BY 1l; SHIFT
FROM 0-63 TO 1-64

LOAD RS9
WITH R7 CONTENTS

\

BRANCH TO NEXT RAND
IF R4 IS NON ZERO;:
DECREMENT R4 BY ONE

B-4-97

COUNT

LOAD R7 WITH
CONTENTS OF RY

A

ARRANGE R6 WITH
HEXADECIMAL '10' IN
BITS 0-7, E OPERAND
IN LOWER ORDER BITS

LOAD ADDRESS
OF STPVAL INTO
R15

LOAD TRANSACTION
NUMBER INTO R8

BRANCH TO STPVAL;
STORE R7 VALUE IN HALFWORD
PARAM. DESIGNATED BY E OPERAND

ROAD C OPERAND (NO. OF
BAGS) INTO R7

B-4-98 "

ARRANGE R6 WITH HEX'(08'
IN BITS 0-7; D OPERAND IN
LOWER ORDER BITS

_ BRANCH TO STPVAL;
STORE R7 VALUES IN BYTE
PARAM, DESIGNATED BY
D OPERAND

A

LOAD STARTING ADDRESS
OF HALFWORD MATRICES
INTO R10

LOAD NUMBER QF COLUMNS
INTO R3

LOAD MH]1 ROW NUMBER
(B OPERAND) INTO RS

A

MULTIPLY RS CONTENTS
BY R3; RESULT IN RS
IS STARTING ADDRESS OF B
OPERAND ROW)

\

LOAD F OPERAND
INTO RS

B-4-99

ADD 13 TO RS
TERMINATING BAGS
ADDRESS MH1 (PHi,14)

LOAD 2 INTO R9

DOES
R8.EQ.R9?
TRANSFER
PASS?

ADD ONE TO RS
TRANSFER BAGS
ADDRESS MH1 (PH1,15)

DOUBLE R5 CONTENTS
" CONVERT FROM
HALFWORD TO BYTE
POR ADDRESSING

LOAD C OPERAND
(NO. OF BAGS) INTO R6

LOAD VALUE STORED
IN MH1 (PH1, 14 OR 15)
INTO RS

B-4-100

ADD R6 TO R8
GROUP BAGS ADDED
TO CUMULATIVE

\

STORE NEW
TOTAL IN
MH1 (PH1, 14 OR 15)

RETURN

B-4-101

CALL:

LA R R B BE 3 B JE N N NI

[I I I

]
®

LINKED

NEXTRAND

XFER

HELP BAGS,
FLT NO (MH1 ROW NUMBER),
FN* (NO OF BAGS DISTRIBUTIDN),
**x PB(NO OF BAGS) *+* R E T U R N,
**» PH(MAX RANDOM NO) ##* RE T U R N,
PB8 (TERMINATE OR TRANSFER)

GENERATES NUMBER OF RANDOM NUMBERS SPECIFIED BY B ARG.
HELP BLOCK ASSUMES THAT C & D ARGS ARE A PB AND PH NUMBER.
RETURNS NUMBER OF RN'S GENERATED IN C ARG, MAX RN IN D ARG.
RANDOM NUMBERS ARE ‘IN THE RANGE 1-84. FOR EACH FLIGHT,
FOR TERMINATING PASSENGERS ONLY, C COUNT IS KEPT OF HOW MANY
TIMES EACH RANDOM NUMBER IS GENERATED. THESE COUNTS ARE
RETURNED VIA MH7,. THIS INFORMATION IS SUBSEQUENTLY
PICKED UP BY THE COPY XAC SPLIT TO BAG CLAIM LOGIC WHICH
ALSO RESETS MH7 TO ZEROS.
BAGS FOR GIVEN FLT ARE SUMMED IN MH1, ROW FLTNO:

PB8 EQ 1 ===> COL 14 - TERMINATE BAGS

PB8 EQ 2 -==> COL 15 - TRANSFER BAGS

START 0

SAVE (14,12)

BALR 12,0

USING »,12

SR 0,0

L 4, LINKADDR

CR 0,4

BNE LINKED

ST 10, GPSSR10

L 10,24(10)

L 10, 1068(10)

L 10,168(10) MH 7

ST 10, LINKADDR

L 10, GPSSR10

L 14,=F'4096"

AR 14,2

M 4,8,0(10)

ST™M 4,8, NORAND

L 4 ,NORAND+

SR 9,9 : MAX RANDOM NUMBER
CR 4,9

BE RETURN

LA 6,8 AN8

L 15,92(10)

ST 10, GPSSR10 '
L 10, LINKADDR

L O,NORAND+16 PB8 VALUE

LA 1,2 PB8 EQ 2 FOR TRANSFER PAX
BALR 5,15

SRA 7.,4(0)

CR 0,1 TEST FOR TRANSFER PAX
BE XFER

LR 8,7

SLA 8,1(0) .
LH 5,0(8,10)

A S,=F'1!

STH 5,0(8,10)

A 7.=F'1! RN 1-64

CR 9,7

BNL COUNT

LR 9,7 SAVE MAX RN

B-4-102

COUNT BCT 4 ,NEXTRAND

LR 7,9 ‘
L 9,2X'10000000' PH
L 6,NORAND+12
OR 6,9
L 10, GPSSR10
L 15,52(10)
L 10,24(10)
LW 8,738(10) XAC NO
BALR 5,15
L 7 ,NORAND+4
L 6,NURAND+8
L 9,2X'08000000' P8
OR 6,9
BALR 5,15 -
L 10,1068(10) MM AREA
L 3,30(10) NO OF CZLS IN MH 1
L 10,24(10) MH 1 "ADDR
L 5,NORAND FLIGHT .(ROW) NUMBER
s B,=F'1}
MR 4,3 (ROW = 1) * NO OF COLS
L 8,NORAND+16
A 5,=F'13! MH1(»,14) FOR TERM PAX BAGS: ADD COL = 1
L 9,sF'2! PBB=2 ===> TRANSFER PAX
CR 8,9
BNE TERM
A 5,aF'1! MH1(%,18) FOR TRANSFER PAX BAGS
TERM AR 5,5
L . 6,NORAND+4
LH 8,0(10,5)
AR 6,8
STH 6,0(10,5)
RETURN RETURN (14,12)
NORAND DS SF
GPSSR10 DS 1F
LINKADDR DC X'00000000°
END

B~4-103/104

	0353_001.pdf
	0354_001

